Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng TC của dãy tỉ số bằng nhau , ta có :
\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)
\(=\frac{\left(2019a+a+a+a\right)+\left(2019b+b+b+b\right)+\left(2019c+c+c+c\right)+\left(2019d+d+d+d\right)}{a+b+c+d}\)
\(=\frac{2022\left(a+b+c+d\right)}{a+b+c+d}=2022\)
Xét a + b + c + d =0
=> ( a + b ) = - ( c + d ) ; ( b + c ) = - ( a + d ) ; ( c + d ) = - ( a + b ) ; (a + d ) = - ( b + c )
\(\Rightarrow M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{d+a}+\frac{-\left(a+b\right)}{b+a}+\frac{-\left(a+d\right)}{b+c}\)
\(M=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)
Xét a + b + c + d khác 0
=> a = b = c = d
=> M = 1 + 1 + 1 + 1 = 4
Vậy .....................
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{b+c+a}\)
\(\Leftrightarrow\frac{b+c+d}{a}=\frac{a+c+d}{b}=\frac{a+b+d}{c}=\frac{b+c+a}{d}\)
\(\Leftrightarrow\frac{b+c+d}{a}+1=\frac{a+c+d}{b}+1=\frac{a+b+d}{c}+1=\frac{b+c+a}{d}+1\)
\(\Leftrightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
\(\Rightarrow a=b=c=d\)
Xét \(a+b+c+d=0\) ta có :
\(a+b=-c-d;b+c=-a-d;c+d=-a-b;d+a=-b-c\)
\(\Rightarrow A=\frac{a+b}{-a-b}+\frac{b+c}{-b-c}+\frac{c+d}{-c-d}+\frac{d+a}{-b-c}=-1-1-1-1=-4\)
Xét \(a+b+c+d\ne0\) ta có : \(a=b=c=d\)
\(\Rightarrow M=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)
Vào câu hỏi tương tự nhé bạn, tham khảo link này :
https://olm.vn/hoi-dap/detail/94049096720.html
Xem lại đề biểu thức M đi bạn, hình như dấu + chứ không phải dấu = nha
Với \(a+b+c+d=0\)
\(\Rightarrow a+b=-\left(c+d\right);b+c=-\left(d+a\right);c+d=-\left(a+b\right);d+a=-\left(b+c\right)\)
Khi đó \(M=-1-1-1-1=-4\)
Với \(a+b+c+d\ne0\)
Áp dụng dãy tỉ số bằng nhau
\(\frac{2019a+b+c+d}{a}=\frac{a+2019b+c+d}{b}=\frac{a+b+2019c+d}{c}=\frac{a+b+c+2019d}{d}\)
\(=\frac{2022\left(a+b+c+d\right)}{a+b+c+d}=2022\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow M=4\)