Tìm x:
\(2\dfrac{3}{4}:x=3\dfrac{1}{7}:0,01\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>4x-5=0 hoặc 5/4x-2=0
=>x=5/4 hoặc x=2:5/4=2*4/5=8/5
b: =>(1/12+19/6-30,75)*x-8=102
=>-55/2x=110
=>x=-4
a) Ta có: \(\dfrac{x}{-15}=\dfrac{-60}{x}\)
\(\Leftrightarrow x^2=\left(-15\right)\cdot\left(-60\right)=900\)
hay \(x\in\left\{30;-30\right\}\)
Vậy: \(x\in\left\{30;-30\right\}\)
b) Ta có: \(\left|x\right|+0.573=2\)
\(\Leftrightarrow\left|x\right|=1.427\)
hay \(x\in\left\{1.427;-1.427\right\}\)
Vậy: \(x\in\left\{1.427;-1.427\right\}\)
c) Ta có: \(\left|x+\dfrac{1}{3}\right|-4=-1\)
\(\Leftrightarrow\left|x+\dfrac{1}{3}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{3}=3\\x+\dfrac{1}{3}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{8}{3};-\dfrac{10}{3}\right\}\)
d) Ta có: \(0.01:2.5=\left(0.75x\right):0.75\)
\(\Leftrightarrow\dfrac{0.75\cdot x}{0.75}=\dfrac{0.01}{2.5}\)
\(\Leftrightarrow x=\dfrac{1}{250}\)
Vậy: \(x=\dfrac{1}{250}\)
a: =>x+2/5=11/12-2/3=11/12-8/12=3/12=1/4
=>x=1/4-2/5=5/20-8/20=-3/20
b: \(\Leftrightarrow x\cdot\dfrac{11}{4}=\dfrac{11}{7}:\dfrac{1}{100}=\dfrac{1100}{7}\)
=>x=1100/7:11/4=400/7
c: =>x=0 hoặc x-1/7=0
=>x=0 hoặc x=1/7
d: =>2x=608/15
=>x=304/15
a: x=4/27-2/3=4/27-18/27=-14/27
b: =>3/4x-1/4x=1/6+7/3
=>1/2x=1/6+14/6=5/2
hay x=5
c: =>13/10x=7/2+5/2=6
=>x=13/10:6=13/60
d: (3x+2)(-2/5x-7)=0
=>3x+2=0 hoặc 2/5x+7=0
=>x=-2/3 hoặc x=-35/2
\(x-\dfrac{1}{2}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}+\dfrac{1}{2}\)
\(x=\dfrac{5}{4}\)
\(x+\dfrac{7}{8}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}-\dfrac{7}{8}\)
\(x=\dfrac{-1}{8}\)
\(\dfrac{1}{2}\cdot x-\dfrac{1}{4}=\dfrac{-1}{2}\)
\(\dfrac{1}{2}\cdot x=\dfrac{-1}{2}+\dfrac{1}{4}\)
\(\dfrac{1}{2}\cdot x=\dfrac{-1}{4}\)
\(x=\dfrac{-1}{4}\div\dfrac{1}{2}\)
\(x=\dfrac{-1}{2}\)
Câu D ko bt
\(2\dfrac{3}{4}:x=3\dfrac{1}{7}:0.01\)
\(\Leftrightarrow\dfrac{11}{4}:x=\dfrac{22}{7}\cdot100\)
\(\Leftrightarrow x=\dfrac{11}{4}:\dfrac{2200}{7}=\dfrac{7}{800}\)