Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a.
$|x+\frac{7}{4}|=\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} x+\frac{7}{4}=\frac{1}{2}\\ x+\frac{7}{4}=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-5}{4}\\ x=\frac{-9}{4}\end{matrix}\right.\)
b. $|2x+1|-\frac{2}{5}=\frac{1}{3}$
$|2x+1|=\frac{1}{3}+\frac{2}{5}$
$|2x+1|=\frac{11}{15}$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=\frac{11}{15}\\ 2x+1=\frac{-11}{15}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-2}{15}\\ x=\frac{-13}{15}\end{matrix}\right.\)
c.
$3x(x+\frac{2}{3})=0$
\(\Leftrightarrow \left[\begin{matrix} 3x=0\\ x+\frac{2}{3}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{-3}{2}\end{matrix}\right.\)
d.
$x+\frac{1}{3}=\frac{2}{5}-(\frac{-1}{3})=\frac{2}{5}+\frac{1}{3}$
$\Leftrightarrow x=\frac{2}{5}$
Nguyễn Quý Trung:
\(x+\dfrac{1}{3}=\dfrac{2}{5}+\dfrac{1}{3}\)
Bạn bớt 2 vế đi 1/3 thì \(x=\dfrac{2}{5}\)
\(b,\Rightarrow\dfrac{x}{2}-\dfrac{3x}{5}-\dfrac{13}{5}=-\dfrac{7}{5}-\dfrac{7x}{10}\\ \Rightarrow\dfrac{1}{2}x-\dfrac{3}{5}x+\dfrac{7}{10}x=\dfrac{6}{5}\\ \Rightarrow\dfrac{3}{5}x=\dfrac{6}{5}\Rightarrow x=2\\ c,\Rightarrow\dfrac{2x-3}{3}-\dfrac{5-3x}{6}=-\dfrac{1}{3}+\dfrac{3}{2}=\dfrac{7}{6}\\ \Rightarrow\dfrac{4x-6-5+3x}{6}=\dfrac{7}{6}\\ \Rightarrow7x-11=7\Rightarrow x=\dfrac{18}{7}\\ d,\Rightarrow\dfrac{2}{3x}+\dfrac{7}{x}=\dfrac{4}{5}+2+\dfrac{3}{12}=\dfrac{61}{20}\\ \Rightarrow\dfrac{23}{3x}=\dfrac{61}{20}\\ \Rightarrow183x=460\\ \Rightarrow x=\dfrac{460}{183}\\ e,\Rightarrow2\left(x-1\right)-\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left(2-x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
e: Ta có: \(\left(x-1\right)^2=2\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
a, \(\left|2x-3\right|-\dfrac{1}{3}=0\Leftrightarrow\left|2x-3\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=\dfrac{1}{3}\\2x-3=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
b, tương tự
c, \(\left|2x-1\right|-\left|x+\dfrac{1}{3}\right|=0\Leftrightarrow\left|2x-1\right|=\left|x+\dfrac{1}{3}\right|\)
TH1 : \(2x-1=x+\dfrac{1}{3}\Leftrightarrow x=\dfrac{4}{3}\)
TH2 : \(2x-1=-x-\dfrac{1}{3}\Leftrightarrow3x=\dfrac{2}{3}\Leftrightarrow x=\dfrac{2}{9}\)
d, \(3x-\left|x+15\right|=\dfrac{5}{4}\Leftrightarrow\left|x+15\right|=3x-\dfrac{5}{4}\)ĐK : x >= 5/12
TH1 : \(x+15=3x-\dfrac{5}{4}\Leftrightarrow-2x=-\dfrac{65}{4}\Leftrightarrow x=\dfrac{65}{8}\)( tm )
TH2 : \(x+15=\dfrac{5}{3}-3x\Leftrightarrow4x=-\dfrac{40}{3}\Leftrightarrow x=-\dfrac{10}{3}\)
a)\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{8}{12}\)
\(\dfrac{2}{5}+x=\dfrac{3}{12}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=\dfrac{5}{20}-\dfrac{8}{20}\)
\(x=\dfrac{-3}{20}\)
b)\(2x\left(x-\dfrac{1}{7}\right)=0\)
\(\Rightarrow2x=0\) hoặc \(x-\dfrac{1}{7}=0\)
\(x=0:2\) \(x=0+\dfrac{1}{7}\)
\(x=0\) \(x=\dfrac{1}{7}\)
\(\Rightarrow x=0\) hoặc \(x=\dfrac{1}{7}\)
c)\(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)
\(\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}\)
\(\dfrac{1}{4}:x=\dfrac{8}{20}-\dfrac{15}{20}\)
\(\dfrac{1}{4}:x=\dfrac{-7}{20}\)
\(x=\dfrac{1}{4}:\dfrac{-7}{20}\)
\(x=\dfrac{1}{4}.\dfrac{-20}{7}\)
x= \(\dfrac{1.\left(-5\right)}{1.7}\)
\(x=\dfrac{-5}{7}\)
\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)
\(\Rightarrow2x=\dfrac{1}{5}\)
\(\Rightarrow x=\dfrac{1}{10}\)
\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)
\(\Leftrightarrow-\dfrac{8}{5}+x=2\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)
\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)
\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)
\(\Leftrightarrow x=-\dfrac{49}{8}\)
\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)
\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)
\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)
\(\Leftrightarrow x=\dfrac{413}{160}\)
a/dễ --> tự lm
b/ \(\left(x-\dfrac{4}{7}\right)\left(1\dfrac{3}{5}+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\1\dfrac{3}{5}+2x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\2x=\dfrac{8}{5}\Rightarrow x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy...............
c/ \(\left(x-\dfrac{4}{7}\right):\left(x+\dfrac{1}{2}\right)>0\)
TH1: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{4}{7}\\x>-\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{4}{7}\)
TH2: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x< -\dfrac{1}{2}\)
Vậy \(x>\dfrac{4}{7}\) hoặc \(x< -\dfrac{1}{2}\) thì thỏa mãn đề
d/ \(\left(2x-3\right):\left(x+1\dfrac{3}{4}\right)< 0\)
TH1: \(\left\{{}\begin{matrix}2x-3>0\\x+1\dfrac{3}{4}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1,5\\x< -\dfrac{7}{4}\end{matrix}\right.\)(vô lý)
TH2: \(\left\{{}\begin{matrix}2x-3< 0\\x+1\dfrac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< 1,5\\x>-\dfrac{7}{4}\end{matrix}\right.\)\(\Rightarrow-\dfrac{7}{4}< x< 1,5\)
Vậy...................
a, \(\dfrac{3}{4}+x=\dfrac{8}{13}\)
\(x=\dfrac{8}{13}-\dfrac{3}{4}\)
\(x=-\dfrac{7}{52}\)
b,\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(x=-\dfrac{3}{20}\)
c, \(2x\left(x-\dfrac{1}{7}\right)=0\)
\(2x-\dfrac{1}{7}=0\)
\(x-\dfrac{1}{7}=0:2\)
\(x-\dfrac{1}{7}=0\)
\(x=0-\dfrac{1}{7}\)
\(x=\dfrac{1}{7}\)
d, \(\dfrac{3}{4}+\dfrac{1}{4}\div x=\dfrac{2}{5}\)
\(\left(\dfrac{3}{4}+\dfrac{1}{4}\right):x=\dfrac{2}{5}\)
\(1:x=\dfrac{2}{5}\)
\(x=1:\dfrac{2}{5}\)
\(x=\dfrac{5}{2}\)
a) \(\dfrac{3}{4}+x=\dfrac{8}{13}\)\(\Leftrightarrow\) \(x=\dfrac{8}{13}-\dfrac{3}{4}=\dfrac{-7}{52}\) vậy \(x=\dfrac{-7}{52}\)
b) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\) \(\Leftrightarrow\) \(\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\) \(\Leftrightarrow\) \(x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}=\dfrac{-3}{20}\) vậy \(x=\dfrac{-3}{20}\)
c) \(2x\left(x-\dfrac{1}{7}\right)=0\) \(\Leftrightarrow\) \(2x^2-\dfrac{2}{7}x=0\)
\(\Delta\) = \(\left(\dfrac{-2}{7}\right)^2-4.2.0=\dfrac{4}{49}>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{\dfrac{2}{7}+\sqrt{\dfrac{4}{49}}}{4}=\dfrac{1}{7}\)
\(x_2=\dfrac{\dfrac{2}{7}-\sqrt{\dfrac{4}{49}}}{4}=0\)
vậy \(x=0;x=\dfrac{1}{7}\)
1:
a: =7/5(40+1/4-25-1/4)-1/2021
=21-1/2021=42440/2021
b: =5/9*9-1*16/25=5-16/25=109/25
a: =>x+2/5=11/12-2/3=11/12-8/12=3/12=1/4
=>x=1/4-2/5=5/20-8/20=-3/20
b: \(\Leftrightarrow x\cdot\dfrac{11}{4}=\dfrac{11}{7}:\dfrac{1}{100}=\dfrac{1100}{7}\)
=>x=1100/7:11/4=400/7
c: =>x=0 hoặc x-1/7=0
=>x=0 hoặc x=1/7
d: =>2x=608/15
=>x=304/15