K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2019

Chậc, lâu ngày ko sờ tới hình học 9 cx hơi quên quên :V

\(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos\left(\overrightarrow{MA};\overrightarrow{MB}\right)=MA.MB\)

Tương tự \(\overrightarrow{MC}.\overrightarrow{MD}=MC.MD\)

Ta cần chứng minh \(\Delta MAD\sim\Delta MCB\)

\(\widehat{M}:chung\)

\(\widehat{MBC}=\overrightarrow{MDA}\) (góc nội tiếp cùng chắn \(\stackrel\frown{AC}\) )

\(\Rightarrow\Delta MAD\sim\Delta MCB\left(g.g\right)\)

\(\Rightarrow MA.MB=MC.MD\Rightarrowđpcm\)

Cái hình bên cạnh lm tương tự chứ còn câu b thì chịu òi (chưa thể nghĩ ra :V)

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Lời giải:

Gọi $O$ là tâm lục giác đều. Khi đó $AD, BE, CF$ giao nhau tại trung điểm $O$ của mỗi đường.

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-(\overrightarrow{MD}+\overrightarrow{MF})$

$=(\overrightarrow{MA}-\overrightarrow{MB})+(\overrightarrow{MC}-\overrightarrow{MD})+(\overrightarrow{ME}-\overrightarrow{MF})$

$=\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}$

$=\overrightarrow{CO}+\overrightarrow{OB}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}$

Do đó:

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB} =\overrightarrow{MD}+\overrightarrow{MF}$

Đáp án C

17 tháng 8 2020

Lời giải:

Gọi $O$ là tâm lục giác đều. Khi đó $AD, BE, CF$ giao nhau tại trung điểm $O$ của mỗi đường.

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-(\overrightarrow{MD}+\overrightarrow{MF})$

$=(\overrightarrow{MA}-\overrightarrow{MB})+(\overrightarrow{MC}-\overrightarrow{MD})+(\overrightarrow{ME}-\overrightarrow{MF})$

$=\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}$

$=\overrightarrow{CO}+\overrightarrow{OB}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}$

Do đó:

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB} =\overrightarrow{MD}+\overrightarrow{MF}$

Đáp án C

11 tháng 8 2018

b) \(VP=\overrightarrow{MC}-\overrightarrow{MD}=\overrightarrow{DC}=\overrightarrow{AB}=VP\left(đpcm\right)\)

c) \(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\\ \Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\left(đúng\right)\\ \)

d) \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\\ \Rightarrow\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\\ \Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\left(đúng\right)\)

21 tháng 7 2019
https://i.imgur.com/bsF4RGI.jpg

1)\(VT=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{CO}+\overrightarrow{DO}+\overrightarrow{OC}+\overrightarrow{OC}=\overrightarrow{CO}+\overrightarrow{OC}+\overrightarrow{DO}+\overrightarrow{OD}=\overrightarrow{0}\)

2)\(VT=\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\)

3)\(VT=\overrightarrow{DO}+\overrightarrow{AO}=\overrightarrow{OB}+\overrightarrow{AO}=\overrightarrow{AB}\)

4)\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\left(đpcm\right)=\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OD}=2\overrightarrow{MO}\left(đpcm\right)\)

Chúc bạn học tốt!!!!!

Đăng kí kênh Youtube 'Ban Mai Anime' giúp mình nhé!!!!

NV
8 tháng 9 2021

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{AB}+\overrightarrow{AD}\)

\(\Leftrightarrow\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}=\overrightarrow{AC}\)

\(\Leftrightarrow4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{AO}\)

\(\Leftrightarrow4\overrightarrow{MO}=2\overrightarrow{OA}\)

\(\Leftrightarrow\overrightarrow{MO}=\dfrac{1}{2}\overrightarrow{AO}\)

\(\Rightarrow M\) là trung điểm OA

8 tháng 9 2021

C