Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $O$ là tâm lục giác đều. Khi đó $AD, BE, CF$ giao nhau tại trung điểm $O$ của mỗi đường.
$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-(\overrightarrow{MD}+\overrightarrow{MF})$
$=(\overrightarrow{MA}-\overrightarrow{MB})+(\overrightarrow{MC}-\overrightarrow{MD})+(\overrightarrow{ME}-\overrightarrow{MF})$
$=\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}$
$=\overrightarrow{CO}+\overrightarrow{OB}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}$
Do đó:
$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB} =\overrightarrow{MD}+\overrightarrow{MF}$
Đáp án C
Lời giải:
Gọi $O$ là tâm lục giác đều. Khi đó $AD, BE, CF$ giao nhau tại trung điểm $O$ của mỗi đường.
$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-(\overrightarrow{MD}+\overrightarrow{MF})$
$=(\overrightarrow{MA}-\overrightarrow{MB})+(\overrightarrow{MC}-\overrightarrow{MD})+(\overrightarrow{ME}-\overrightarrow{MF})$
$=\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}$
$=\overrightarrow{CO}+\overrightarrow{OB}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}$
Do đó:
$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB} =\overrightarrow{MD}+\overrightarrow{MF}$
Đáp án C
Do là giao điểm của hai đường chéo hình bình hành nên:
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}\) (ĐPCM).
b) \(VP=\overrightarrow{MC}-\overrightarrow{MD}=\overrightarrow{DC}=\overrightarrow{AB}=VP\left(đpcm\right)\)
c) \(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\\ \Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\left(đúng\right)\\ \)
d) \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\\ \Rightarrow\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\\ \Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\left(đúng\right)\)
1)\(VT=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{CO}+\overrightarrow{DO}+\overrightarrow{OC}+\overrightarrow{OC}=\overrightarrow{CO}+\overrightarrow{OC}+\overrightarrow{DO}+\overrightarrow{OD}=\overrightarrow{0}\)
2)\(VT=\overrightarrow{DA}-\overrightarrow{DB}+\overrightarrow{DC}=\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\)
3)\(VT=\overrightarrow{DO}+\overrightarrow{AO}=\overrightarrow{OB}+\overrightarrow{AO}=\overrightarrow{AB}\)
4)\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\left(đpcm\right)=\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OD}=2\overrightarrow{MO}\left(đpcm\right)\)
Chúc bạn học tốt!!!!!
Đăng kí kênh Youtube 'Ban Mai Anime' giúp mình nhé!!!!
Chậc, lâu ngày ko sờ tới hình học 9 cx hơi quên quên :V
\(\overrightarrow{MA}.\overrightarrow{MB}=MA.MB.\cos\left(\overrightarrow{MA};\overrightarrow{MB}\right)=MA.MB\)
Tương tự \(\overrightarrow{MC}.\overrightarrow{MD}=MC.MD\)
Ta cần chứng minh \(\Delta MAD\sim\Delta MCB\)
\(\widehat{M}:chung\)
\(\widehat{MBC}=\overrightarrow{MDA}\) (góc nội tiếp cùng chắn \(\stackrel\frown{AC}\) )
\(\Rightarrow\Delta MAD\sim\Delta MCB\left(g.g\right)\)
\(\Rightarrow MA.MB=MC.MD\Rightarrowđpcm\)
Cái hình bên cạnh lm tương tự chứ còn câu b thì chịu òi (chưa thể nghĩ ra :V)