Cho tam giác ABC có M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Tính
a. Vecto AB+ CA+ BC
b. Vecto AM+ AP
c. Vecto AM+ BN+ CP
giúp em với ạ:(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sao mình ko thấy lời giải của bạn, mình chỉ thấy hình thôi
\(\overrightarrow{AB}+\overrightarrow{NA}+\overrightarrow{BM}+\overrightarrow{BQ}=\overrightarrow{NB}+\overrightarrow{BM}+\overrightarrow{BQ}=\overrightarrow{NM}+\overrightarrow{BQ}\)
\(\overrightarrow{NM}=\overrightarrow{BQ}=\overrightarrow{QC}\)
\(\Rightarrow\overrightarrow{NM}+\overrightarrow{BQ}=\overrightarrow{QC}+\overrightarrow{BQ}=\overrightarrow{BC}\)
a: \(\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\overrightarrow{CB}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\overrightarrow{u}-\overrightarrow{v}\)
a: \(\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BC}\)
\(=\overrightarrow{CB}+\overrightarrow{BC}\)
\(=\overrightarrow{0}\)
b: \(\overrightarrow{AM}+\overrightarrow{AP}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{2}\cdot2\cdot\overrightarrow{AN}=\overrightarrow{AN}\)