Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{AB}+\overrightarrow{NA}+\overrightarrow{BM}+\overrightarrow{BQ}=\overrightarrow{NB}+\overrightarrow{BM}+\overrightarrow{BQ}=\overrightarrow{NM}+\overrightarrow{BQ}\)
\(\overrightarrow{NM}=\overrightarrow{BQ}=\overrightarrow{QC}\)
\(\Rightarrow\overrightarrow{NM}+\overrightarrow{BQ}=\overrightarrow{QC}+\overrightarrow{BQ}=\overrightarrow{BC}\)
a: \(\overrightarrow{CN}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\overrightarrow{CB}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{CB}\)
\(=\dfrac{1}{2}\overrightarrow{u}-\overrightarrow{v}\)
a: \(\overrightarrow{CA}+\overrightarrow{AB}+\overrightarrow{BC}\)
\(=\overrightarrow{CB}+\overrightarrow{BC}\)
\(=\overrightarrow{0}\)
b: \(\overrightarrow{AM}+\overrightarrow{AP}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)=\dfrac{1}{2}\cdot2\cdot\overrightarrow{AN}=\overrightarrow{AN}\)