cho tam giác abc vuông tại c. gọi m là trung điểm ab. vẽ me vuông góc ac tại e, mf vuông góc bc tại f.
a) CM: tứ giác cfme là hình chữ nhật và cm = ef
b) CM: E là trung điểm AC
c) Gọi D là điểm đối xứng với M qua AC. CM: tứ giác CMAD là hình thoi
d) Gọi O là giao điểm của CM và EF. CM: 3 điểm B,O,D thẳng hàng
a, tam giác ABC vuông tại C (gt)
=> góc ACB = 90 (đn)
có ME _|_ AC (gt) => góc MEC = 90 (đn)
MF _|_ BC (gt) => góc MFC = 90 (đn)
xét tứ giác EMFC
=> EMFC là hình chữ nhật (dấu hiệu)
=> CM = EF (tính chất)
b, M là trung điểm của AB (Gt)
=> CM là trung tuyến (đn/)
tam giác ABC vuông tại C (Gt)
=> CM = AM = AB/2 (đl)
xét tam giác AME và tam giác CME có : EM chung
góc MEA = góc MEC = 90
=> tam giác AME = tam giác CME (ch-cgv)
=> AE = EC (đn)
E thuộc AC
=> E là trung điểm của AC (đn)
c, có ME _|_ AC
=> MD _|_ AC ; xét tứ giác ADCM
=> ADCM là hình thoi (dấu hiệu)
h