K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

\(x^2+4y^2+13-6x+8y=0\)

\(=\left(x-3\right)^2+4\left(y-1\right)^2-26\ge-26\)

\(Min\)\(-26\Leftrightarrow x=3;y=1\)

Vậy................

16 tháng 11 2019

ê m......đề bài là tìm x, y thôi

=x^2-6x+9+4y^2-8y+4+2010

=(x-3)^2+(2y-2)^2+2010>=2010

Dấu = xảy ra khi x=3 và y=1

1 tháng 4 2022

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

x^2+4y^2+z^2-2x-6z+8y+15

=x^2+4y^2+z^2-2x-6z+8y+1+1+4+9

=(x^2-2x+1)+(4y^2+8y+4)+(z^2-6z+9)+1

=(x-1)^2+4(y+1)^2+(z-3^)2+1

Ta thấy:(x−1)^2≥0

              4(y+1)^2≥0

             (z−3)^ 2≥0

{(x−1)^24(y+1)^2(z−3)^2≥0

⇒(x−1)^2+4(y+1)^2+(z−3)^2≥0

⇒(x−1)2+4(y+1)2+(z−3)2+1≥0+1=1>0

Khét đấy hot girl !

19 tháng 7 2021

a) Áp dụng bất đẳng thức Cosi ta có :

\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)

Suy ra \(S\leq 6\)

Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)

 

8 tháng 8 2016

\(x^2-2x+5+y^2-4y=0\)

\(x^2-2\times x\times1+1^2-1^2+y^2-2\times y\times2+2^2-2^2+5=0\)

\(\left(x-1\right)^2+\left(y-2\right)^2=0\)

\(\left(x-1\right)^2\ge0\)

\(\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)^2=\left(y-2\right)^2=0\)

\(\Leftrightarrow x-1=y-2=0\)

\(\Leftrightarrow x=1;y=2\)

8 tháng 8 2016

\(x^2+4y^2+13-6x-8y=0\)

\(\Leftrightarrow x^2-6x+9+4y^2-8y+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(2y-2\right)^2=0\)

Dấu = xảy ra khi

\(\orbr{\begin{cases}x-3=0\\2y-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=1\end{cases}}\)

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

$3^x.x^2=4y(y+1)$ nên $x$ chẵn. Đặt $x=2a$ ta có:

$3^{2a}.a^2=y(y+1)\Leftrightarrow (3^a.a)^2=y(y+1)$

Dễ thấy $(y,y+1)=1$ nên để tích của chúng là scp thì $y,y+1$ là scp.

Đặt $y=m^2; y+1=n^2$ với $m,n$ tự nhiên.

$\Rightarrow 1=(n-m)(n+m)$

$\Rightarrow n=1; m=0\Rightarrow y=0\Rightarrow x=0$