K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2019

a) Để A có nghĩa thì : 
\(3x^3-x^2-3x+1\ne0\)

\(\Leftrightarrow x^2\left(3x-1\right)-\left(3x-1\right)\ne0\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-1\right)\ne0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(x+1\right)\ne0\)

\(\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne1\\x\ne-1\end{cases}}\)

ĐKXĐ : \(\hept{\begin{cases}x\ne\frac{1}{3}&x\ne\pm1&\end{cases}}\)

25 tháng 9 2016

Để \(A\)có nghĩa thì \(x^3-3x-2\ne0\)

\(\Rightarrow\left(x^3-x\right)-\left(2x-2\right)\ne0\)

\(\Rightarrow x\left(x^2-1\right)-2\left(x-1\right)\ne0\)

\(x\left(x+1\right)\left(x-1\right)-2\left(x-1\right)\ne0\)

\(\left(x^2+x-2\right)\left(x-1\right)\ne0\)

\(\Rightarrow\left[x^2-1+x-1\right]\left(x-1\right)\ne0\)

\(\left[\left(x-1\right)\left(x+1\right)+\left(x-1\right)\right]\left(x-1\right)\ne0\)

\(\left(x-1\right)^2\left(x+2\right)\ne0\)

\(\Rightarrow x\ne1;-2\)

Vậy...

27 tháng 3 2020

x khác 1 , x khác -2

15 tháng 12 2021

\(a,ĐK:x\ne\pm2\\ b,A=\dfrac{5x+10+14x-28-20}{2\left(x-2\right)\left(x+2\right)}=\dfrac{19\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}=\dfrac{19}{2\left(x+2\right)}\\ c,x=-\dfrac{1}{2}\Leftrightarrow A=\dfrac{19}{2\left(2-\dfrac{1}{2}\right)}=\dfrac{19}{2\cdot\dfrac{3}{2}}=\dfrac{19}{3}\)

Câu 2: 

a: Ta có: \(P=3x-\sqrt{x^2-10x+25}\)

\(=3x-\left|x-5\right|\)

\(=\left[{}\begin{matrix}3x-x+5=2x+5\left(x\ge5\right)\\3x+x-5=4x-5\left(x< 5\right)\end{matrix}\right.\)

b: Vì x=2<5 nên \(P=4\cdot2-5=8-5=3\)

3 tháng 6 2018

1. Để A có nghĩa thì \(x^3-3x-2\ne0\)

\(\Rightarrow\left(x^3-x\right)-\left(2x-2\right)\ne0\)

\(\Rightarrow x\left(x^2-1\right)-2\left(x-1\right)\ne0\)

\(\Rightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\ne0\)

\(\Rightarrow\left(x^2+x-2\right)\left(x-1\right)\ne0\)

\(\Rightarrow\left(x^2-1+x-1\right)\left(x-1\right)\ne0\)

\(\Rightarrow\left[\left(x+1\right)\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)\ne0\)

\(\Rightarrow\left(x-1\right)^2\left(x+2\right)\ne0\)

\(\Rightarrow x\ne1;x\ne-2\)

2. \(A=\frac{x^4-2x^2+1}{x^3-3x-2}=\frac{\left(x^2-1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left[\left(x-1\right)\left(x+1\right)\right]^2}{\left(x-1\right)^2\left(x+2\right)}\)

                                                    \(=\frac{\left(x-1\right)^2.\left(x+1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left(x+1\right)^2}{x+2}\)

3/ Để A < 1 \(\Leftrightarrow\frac{\left(x+1\right)^2}{x+2}< 1\Leftrightarrow\left(x+1\right)^2< x+2\)

                                                        \(\Leftrightarrow x^2+2x+1< x+2\)

                                                         \(\Leftrightarrow x^2+x< 1\)

                                                           \(\Leftrightarrow x.\left(x+1\right)< 1\)

Vậy .....

3 tháng 6 2018

1. A có nghĩa khi \(x^3-3x-2\ne0\)

\(\Leftrightarrow x^3+x^2-x^2-x-2x-2\ne0\)

\(\Leftrightarrow x^2\left(x+1\right)-x\left(x+1\right)-2\left(x+1\right)\ne0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2-x-2\right)\ne0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+x-2x-2\right)\)

\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow x-2\ne0\)(do \(\left(x+1\right)^2\ge0\)\(\Leftrightarrow x\ne2\)

2. Ta có :

Tử = \(x^4-2x^2+1=x^4-x^3+x^3-x^2-x^2+x-x+1\)

=\(x^3\left(x-1\right)+x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)

=\(\left(x-1\right)\left(x^3+x^2-x-1\right)=\left(x-1\right)\left[x^2\left(x+1\right)-x\left(x+1\right)\right]\)

=\(\left(x-1\right)\left(x+1\right)\left(x^2-1\right)=\left(x-1\right)\left(x+1\right)\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)^2\left(x-1\right)^2\)

Vậy \(A=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)

3. \(A< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Leftrightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)

\(\Leftrightarrow\frac{x^2-3x+3}{x-2}< 0\)ta có \(x^2-3x+3=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{3}{4}=\left(x-\frac{3}{4}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\)(1) \(\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)(Thỏa mãn)

Vậy x<2 thì A<1

a: ĐKXĐ: x^3-3x-2<>0

=>x^3-x-2x-2<>0

=>x(x-1)(x+1)-2(x+1)<>0

=>(x+1)(x-2)(x+1)<>0

=>x<>2 và x<>-1

b: \(A=\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x-2\right)\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2}{x-2}\)

c: 

A<1

=>A-1<0

\(A-1=\dfrac{x^2-2x+1-x+2}{x-2}=\dfrac{x^2-3x+3}{x-2}\)

=>x-2<0

=>x<2

17 tháng 12 2016

a) ĐKXĐ: \(^{x^3+2x^2+x+2}\)khác 0

=> x^2(x+2)+(x+2) Khác 0

=> (x^2+1)(x+2) khác 0

=> x^2 khác -1(vô lý) và x khác -2

Vậy x khác -2 thì biểu thức A được xác định

b)\(A=\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)

\(=\frac{3x^2\left(x+2\right)}{\left(x^2+1\right)\left(x+2\right)}=\frac{3x^2}{x^2+1}\)

Để A=2 thì \(\frac{3x^2}{x+2}=2\)=>\(3x^2=2\left(x^2+1\right)=>3x^2=2x^2+2\)

\(=>x^2=2=>x=\sqrt{2}\)(Thỏa mãn điều kiện xác định)

17 tháng 12 2016

mơm nhìu nhaKagamine Len love Vocaloid02

20 tháng 8 2016

a )\(\left[\begin{array}{nghiempt}x+1\ne0\\2x-3\ne0\end{array}\right.\)

\(ĐKXĐ:x\ne-1,x\ne\frac{3}{2}\)

b ) \(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)

Để \(A=3\) thì :

 \(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=-\frac{3}{2}\)

Chúc bạn học tốt