Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Để A có nghĩa thì \(x^3-3x-2\ne0\)
\(\Rightarrow\left(x^3-x\right)-\left(2x-2\right)\ne0\)
\(\Rightarrow x\left(x^2-1\right)-2\left(x-1\right)\ne0\)
\(\Rightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\ne0\)
\(\Rightarrow\left(x^2+x-2\right)\left(x-1\right)\ne0\)
\(\Rightarrow\left(x^2-1+x-1\right)\left(x-1\right)\ne0\)
\(\Rightarrow\left[\left(x+1\right)\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)\ne0\)
\(\Rightarrow\left(x-1\right)^2\left(x+2\right)\ne0\)
\(\Rightarrow x\ne1;x\ne-2\)
2. \(A=\frac{x^4-2x^2+1}{x^3-3x-2}=\frac{\left(x^2-1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left[\left(x-1\right)\left(x+1\right)\right]^2}{\left(x-1\right)^2\left(x+2\right)}\)
\(=\frac{\left(x-1\right)^2.\left(x+1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left(x+1\right)^2}{x+2}\)
3/ Để A < 1 \(\Leftrightarrow\frac{\left(x+1\right)^2}{x+2}< 1\Leftrightarrow\left(x+1\right)^2< x+2\)
\(\Leftrightarrow x^2+2x+1< x+2\)
\(\Leftrightarrow x^2+x< 1\)
\(\Leftrightarrow x.\left(x+1\right)< 1\)
Vậy .....
1. A có nghĩa khi \(x^3-3x-2\ne0\)
\(\Leftrightarrow x^3+x^2-x^2-x-2x-2\ne0\)
\(\Leftrightarrow x^2\left(x+1\right)-x\left(x+1\right)-2\left(x+1\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x-2\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x-2x-2\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow x-2\ne0\)(do \(\left(x+1\right)^2\ge0\)) \(\Leftrightarrow x\ne2\)
2. Ta có :
Tử = \(x^4-2x^2+1=x^4-x^3+x^3-x^2-x^2+x-x+1\)
=\(x^3\left(x-1\right)+x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
=\(\left(x-1\right)\left(x^3+x^2-x-1\right)=\left(x-1\right)\left[x^2\left(x+1\right)-x\left(x+1\right)\right]\)
=\(\left(x-1\right)\left(x+1\right)\left(x^2-1\right)=\left(x-1\right)\left(x+1\right)\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)^2\left(x-1\right)^2\)
Vậy \(A=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)
3. \(A< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Leftrightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)
\(\Leftrightarrow\frac{x^2-3x+3}{x-2}< 0\)ta có \(x^2-3x+3=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{3}{4}=\left(x-\frac{3}{4}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\)(1) \(\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)(Thỏa mãn)
Vậy x<2 thì A<1
1.A=\(\frac{x^4-2x^2+1}{x^3-3x-2}\)
A có nghĩa \(\Leftrightarrow x^3-3x-2\ne0\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
2 .A = \(\frac{x^4-2x^2+1}{x^3-3x-2}\)=\(\frac{\left(x^2-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)
A<1\(\Rightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Rightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)
\(\Rightarrow\frac{x^2-3x+3}{x-2}< 0\Rightarrow x-2< 0\)vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy x<2 thỏa mãn yêu cầu A<1
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)
b: \(A=\dfrac{x\left(x+1\right)^2}{x\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)
c: Thay x=2 vào A, ta được:
\(A=\dfrac{2+1}{2-1}=3\)
d: Để A=2 thì x+1=2x-2
=>-x=-3
hay x=3(nhận)
a. \(ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
b. \(A=\dfrac{3x+3}{x^2-1}\\ A=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ A=\dfrac{3}{x-1}\)
c. Để \(A=-2\) thì \(\dfrac{3}{x-1}=-2=\dfrac{3}{\dfrac{-3}{2}}\\ \Leftrightarrow x-1=\dfrac{-3}{2}\\ \Leftrightarrow x=\dfrac{-1}{2}\left(\text{t/m ĐKXĐ}\right)\)
Vậy \(x=\dfrac{-1}{2}\) để phân thức nhận giá trị là -2.
a) Có: \(x^2-1=\left(x-1\right)\left(x+1\right)\)
ĐKXĐ là x ≠ 1; x ≠ -1
b) \(\dfrac{3x+3}{x^2-1}=\dfrac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x-1}\)
c) Theo đề ta có: \(\dfrac{3}{x-1}=2\)
\(\Rightarrow x-1=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{5}{2}\) (T/m ĐK)
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)