tìm hệ số không phụ thuộc vào x trong các khai triển sau:
a, \(\left(x^3+\frac{1}{\sqrt[3]{x^2}}\right)^{60}\)
b, \((\sqrt[3]{\frac{1}{x^2}}+x\sqrt[3]{x})^{12}\)
c, \(\left(1+\frac{1}{\sqrt[4]{x^2}}-x^3\right)^{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
\(A=\frac{\left(1+\sqrt{x}\right)^2-4\sqrt{x}}{\sqrt{x}-1}\) \(\left(x\ge0;x\ne1\right)\)
\(A=\frac{x+2\sqrt{x}+1-4\sqrt{x}}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
và \(B=\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{2+\sqrt{2}}{\sqrt{x}+1}\)
\(B=\frac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{2}}+\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)
\(B=\sqrt{3}+2+\frac{1}{\sqrt{3}-\sqrt{2}}+\sqrt{2}\)
\(B=\sqrt{3}+\sqrt{2}+\frac{1}{\sqrt{3}-\sqrt{2}}+2\)
\(B=\frac{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)+1}{\sqrt{3}-\sqrt{2}}+2\)
\(B=\frac{3-2+1}{\sqrt{3}-\sqrt{2}}+2\)
\(B=\frac{2}{\sqrt{3}-\sqrt{2}}+2\)
để A = B thì \(\sqrt{x}-1\)= \(\frac{2}{\sqrt{3}-\sqrt{2}}+2\)
\(\sqrt{x}=\frac{2}{\sqrt{3}-\sqrt{2}}+3\)
\(\sqrt{x}=\frac{2\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+3\)
\(\sqrt{x}=2\sqrt{3}+2\sqrt{2}+3\)
tới bước này tui bí :(( mong các bạn giỏi khác giúp bạn :D
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
a/ \(\left(x^3+x^{-\frac{2}{3}}\right)^{60}\)
SHTQ: \(C_{60}^k\left(x^3\right)^k\left(x^{-\frac{2}{3}}\right)^{60-k}=C_{60}^kx^{\frac{11k}{3}-40}\)
Số hạng ko chứa x \(\Rightarrow\frac{11k}{3}-40=0\Rightarrow\) ko tồn tại k nguyên thỏa mãn
Vậy trong khai triển ko chứa số hạng ko phụ thuộc x
b/ \(\left(x^{-\frac{2}{3}}+x^{\frac{4}{3}}\right)^{12}\)
SHTQ: \(C_{12}^k\left(x^{-\frac{2}{3}}\right)^k\left(x^{\frac{4}{3}}\right)^{12-k}=C_{12}^kx^{16-2k}\)
Số hạng ko chứa x \(\Rightarrow16-2k=0\Rightarrow k=8\)
Hệ số: \(C_{12}^8\)
c/ \(\left(1+x^{-\frac{1}{2}}-x^3\right)^{16}\)
\(\left\{{}\begin{matrix}k_0+k_{-\frac{1}{2}}+k_3=16\\-\frac{1}{2}k_{-\frac{1}{2}}+3k_3=0\end{matrix}\right.\) \(\Rightarrow\left(k_0;k_{-\frac{1}{2}};k_3\right)=\left(16;0;0\right);\left(9;6;1\right);\left(2;12;2\right)\)
Hệ số của số hạng ko chứa x:
\(\frac{16!}{16!}+\frac{16!}{9!.6!}.\left(-1\right)+\frac{16!}{2!.12!.2!}=-69159\)