So sánh: \(\log_{2019}2020\) và \(\log_{2020}2021\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có: N=2019+2020/2020+2021
=>N=2019/2020+2021 + 2020/2020+2021
Vì 2019/2020 > 2019/2020+2021 ; 2020/2021 > 2020/2020+2021
=>M>N
Vậy ...
Chúc bạn học tốt!
Ta có : \(\dfrac{2019}{2020}>\dfrac{2019}{2020+2021}\)
\(\dfrac{2020}{2021}>\dfrac{2020}{2020+2021}\)
\(\Rightarrow\dfrac{2019}{2020}+\dfrac{2020}{2021}>\dfrac{2019+2020}{2020+2021}\)
\(\Rightarrow M>N\)
Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)
=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)
=> A > B.
\(\dfrac{-2019}{2019}=-1\)
\(\dfrac{-2021}{2020}=-1,004\)
\(\Rightarrow\dfrac{-2019}{2019}>\dfrac{-2021}{2020}\)
Lời giải:
$A=1-\frac{1}{2019}+1-\frac{1}{2020}+1-\frac{1}{2021}+1+\frac{3}{2018}$
$=4+(\frac{1}{2018}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2020}+\frac{1}{2018}-\frac{1}{2021})$
$> 4+0+0+0+0=4$
\(log_{2019}2020=\frac{ln2020}{ln2019}=\frac{ln2019\left(1+\frac{1}{2019}\right)}{ln2019}=1+\frac{ln\left(1+\frac{1}{2019}\right)}{ln2019}\)
Tương tự: \(log_{2020}2021=1+\frac{ln\left(1+\frac{1}{2020}\right)}{ln2020}\)
Ta có:
\(\frac{1}{2019}>\frac{1}{2020}\Rightarrow ln\left(1+\frac{1}{2019}\right)>ln\left(1+\frac{1}{2020}\right)>0\) (1)
\(2019< 2020\Rightarrow ln2019< ln2020\Rightarrow\frac{1}{ln2019}>\frac{1}{ln2020}>0\) (2)
Nhân vế với vế của (1) và (2):
\(\Rightarrow\frac{ln\left(1+\frac{1}{2019}\right)}{ln2019}>\frac{ln\left(1+\frac{1}{2020}\right)}{ln2020}\)
\(\Rightarrow log_{2019}2020>log_{2020}2021\)