K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 11 2019

\(log_{2019}2020=\frac{ln2020}{ln2019}=\frac{ln2019\left(1+\frac{1}{2019}\right)}{ln2019}=1+\frac{ln\left(1+\frac{1}{2019}\right)}{ln2019}\)

Tương tự: \(log_{2020}2021=1+\frac{ln\left(1+\frac{1}{2020}\right)}{ln2020}\)

Ta có:

\(\frac{1}{2019}>\frac{1}{2020}\Rightarrow ln\left(1+\frac{1}{2019}\right)>ln\left(1+\frac{1}{2020}\right)>0\) (1)

\(2019< 2020\Rightarrow ln2019< ln2020\Rightarrow\frac{1}{ln2019}>\frac{1}{ln2020}>0\) (2)

Nhân vế với vế của (1) và (2):

\(\Rightarrow\frac{ln\left(1+\frac{1}{2019}\right)}{ln2019}>\frac{ln\left(1+\frac{1}{2020}\right)}{ln2020}\)

\(\Rightarrow log_{2019}2020>log_{2020}2021\)

14 tháng 5 2016

a. \(\log_{2011}2012\)  và \(\log_{2012}2013\)

Ta luôn có : \(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi \(n>1\) (*)

Thật vậy : 

- Ta có : \(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\Rightarrow\log_{n+1}\left(n+1\right)^2>\log_{n+1}\left[n\left(n+2\right)\right]\)

hay :

\(2>\log_{n+1}n+\log_{n+1}\left(n+2\right)\) (1)

- Áp dụng Bất đẳng thức Cauchy, ta có : 

\(\log_{n+1}n+\log_{n+1}\left(n+1\right)>2\sqrt{\log_{n+1}n.\log_{n+1}\left(n+2\right)}\)  (2)

((2) không xảy ra dấu "=" vì \(\log_{n+1}n\ne\log_{n+1}\left(n+2\right)\) )

- Từ (1) và (2) \(\Rightarrow2>2\sqrt{\log_{n+1}n.\log_{n+1}\left(n+2\right)}\)

                      \(\Rightarrow1>\log_{n+1}n.\log_{n+1}\left(n+2\right)\)

                      \(\Leftrightarrow\frac{1}{\log_{n+1}n}>\log_{n+1}\left(n+2\right)\)

                      \(\Leftrightarrow\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\)

Áp dụng (*) với \(n=2011\Rightarrow\log_{2011}2012>\log_{2012}2013\)

 

b. \(\log_{13}150\) và \(\log_{17}290\)

Ta có : \(\log_{12}150< \log_{13}169=2=\log_{17}289< \log_{17}290\Rightarrow\log_{13}150< \log_{17}290\)

 

c. \(\log_34\) và \(\log_{10}11\)

Ta luôn có : \(\log_a\left(a+1\right)>\log_{a+1}\left(a+2\right)\) với \(0< a\ne1\) (*)

Tương tự câu (a), áp dụng liên tiếp (*) ta được :

\(\log_34>\log_45>\log_56>\log_67>\log_78>\log_89>\log_910>\log_{10}11\)

hay \(\log_34>\log_{10}11\)

 

NV
2 tháng 9 2021

\(f'\left(x\right)=0\) có 2 nghiệm bội lẻ \(x=2019\) và \(x=2021\) nên hàm có 2 cực trị

12 tháng 4 2017

a) \(log_3\dfrac{6}{5}>log_3\dfrac{5}{6}\) vì \(\dfrac{6}{5}>\dfrac{5}{6}\)

b) \(log_{\dfrac{1}{3}}9>log_{\dfrac{1}{3}}17\) vì \(9>17\) và \(0< \dfrac{1}{3}< 1\).

c) \(log_{\dfrac{1}{2}}e>log_{\dfrac{1}{2}}\pi\) vì \(e>\pi\) và \(0< \dfrac{1}{2}< 1\)

d) \(log_2\dfrac{\sqrt{5}}{2}>log_2\dfrac{\sqrt{3}}{2}\)  vì \(\dfrac{\sqrt{5}}{2}>\dfrac{\sqrt{3}}{2}\).

Em rất muốn biết ... anh học lớp mấy vậy ??? Đây là bài lớp 12 mà batngo

14 tháng 5 2016

a. \(2^{2\log_25+\log_{\frac{1}{2}}9}\) và \(\frac{\sqrt{626}}{6}\)

Ta có : \(2^{2\log_25+\log_{\frac{1}{2}}9}=2^{\log_225-\log_29}=2^{\log_2\frac{25}{9}}=\frac{25}{9}=\frac{\sqrt{625}}{9}< \frac{\sqrt{626}}{6}\)

           \(\Rightarrow2^{2\log_25+\log_{\frac{1}{2}}9}< \frac{\sqrt{626}}{6}\)

 

b. \(3^{\log_61,1}\) và \(7^{\log_60,99}\)

Ta có : \(\begin{cases}\log_61,1>0\Rightarrow3^{\log_61,1}>3^0=1\\\log_60,99< 0\Rightarrow7^{\log_60,99}< 7^0=1\end{cases}\)

             \(\Rightarrow3^{\log_61,1}>7^{\log_60,99}\)

 

c.  \(\log_{\frac{1}{3}}\frac{1}{80}\) và \(\log_{\frac{1}{2}}\frac{1}{15+\sqrt{2}}\)

Ta có : \(\begin{cases}\log_{\frac{1}{2}}\frac{1}{80}=\log_{3^{-1}}80^{-1}=\log_380< \log_381=4\\\log_{\frac{1}{2}}\frac{1}{15+\sqrt{2}}=\log_{2^{-1}}\left(15+\sqrt{2}\right)^{-1}=\log_2\left(15+\sqrt{2}\right)>\log_216=4\end{cases}\)

            \(\Rightarrow\log_{\frac{1}{3}}\frac{1}{80}< \log_{\frac{1}{2}}\frac{1}{15+\sqrt{2}}\)

GV
27 tháng 4 2017

a) Áp dụng công thức: \(\log_ab.\log_bc=\log_ac\)

b) Vì \(\dfrac{1}{\log_{a^k}b}=\dfrac{1}{\dfrac{1}{k}\log_ab}=\dfrac{k}{\log_ab}\) nên biểu thức vế trái bằng:

\(VT=\dfrac{1}{\log_ab}\left(1+2+...+n\right)\)

\(=\dfrac{1}{\log_ab}.\dfrac{n\left(n+1\right)}{2}=VP\)

14 tháng 5 2016

a. \(0,7^{\frac{\sqrt{5}}{2}}\) và \(0,7^{\frac{1}{3}}\).

Ta có : \(\begin{cases}\left(\frac{\sqrt{5}}{6}\right)^2=\frac{5}{36}>\frac{4}{36}=\left(\frac{1}{3}\right)^2\Rightarrow\frac{\sqrt{5}}{6}>\frac{1}{3}\\0< 0,7< 1\end{cases}\)

                                        \(\Rightarrow0,7^{\frac{\sqrt{5}}{6}}< 0,7^{\frac{1}{3}}\)

 

b. \(2^{\sqrt{3}}\) và \(3^{\sqrt{2}}\)

Ta có : \(\begin{cases}\left(2^{\sqrt{3}}\right)^{\sqrt{3}}=2^3=8\\\left(3^{\sqrt{2}}\right)^{\sqrt{3}}=3^{\sqrt{6}}>3^2=9\end{cases}\)

\(\Rightarrow\left(2^{\sqrt{3}}\right)^{\sqrt{3}}< \left(3^{\sqrt{2}}\right)^{\sqrt{3}}\)

\(\Rightarrow2^{\sqrt{3}}< 3^{\sqrt{2}}\)

 

c. \(\log_{0.4}\sqrt{2}\) và \(\log_{0,2}0,34\)

Ta có : \(\begin{cases}0< 0,4< 1;\sqrt{2}>1\Rightarrow\log_{0,4}\sqrt{2}< 0\\0< 0,2< 1;0< 1< 0,34\Rightarrow\log_{0,2}0,3>0\end{cases}\)

\(\Rightarrow\log_{0,4}\sqrt{2}< \log_{0,2}0,34\)

AH
Akai Haruma
Giáo viên
6 tháng 11 2017

Lời giải:

ĐKXĐ: \(x>0\)

Sử dụng công thức sau: \(\log_ax=\frac{\ln x}{\ln a}\) vào bài toán ta có:

\(\log_2x+\log_3x=\log_2x\log_3x\)

\(\Leftrightarrow \frac{\ln x}{\ln 2}+\frac{\ln x}{\ln 3}=\frac{\ln x}{\ln 2}.\frac{\ln x}{\ln 3}\)

\(\Leftrightarrow \ln x\left(\frac{1}{\ln 2}+\frac{1}{\ln 3}-\frac{\ln x}{\ln 2.\ln 3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\ln x=0\left(1\right)\\\dfrac{1}{\ln2}+\dfrac{1}{\ln3}=\dfrac{\ln x}{\ln2.\ln3}\end{matrix}\right.\left(2\right)\)

\((1)\Leftrightarrow x=1\) (thỏa mãn)

\((2)\Leftrightarrow \frac{\ln 2+\ln 3}{\ln 2.\ln 3}=\frac{\ln x}{\ln 2.\ln 3}\)

\(\Leftrightarrow \ln x=\ln 2+\ln 3=\ln 6\Rightarrow x=6\)

Vậy \(x\in\left\{1;6\right\}\)

NV
19 tháng 11 2019

\(log_{c+b}a+log_{c-b}a=\frac{1}{log_a\left(c+b\right)}+\frac{1}{log_a\left(c-b\right)}\)

\(=\frac{log_a\left(c-b\right)+log_a\left(c+b\right)}{log_a\left(c-b\right).log_a\left(c+b\right)}=\frac{log_a\left(c^2-b^2\right)}{log_a\left(c-b\right)log_a\left(c+b\right)}\)

\(=log_aa^2.log_{\left(c+b\right)}a.log_{c-b}a=2log_{c+b}a.log_{c-b}a\)