K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

Ta có: \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1-\frac{1}{100}=\frac{99}{100}< 1\)

Vậy A<1

Học tốt nha!!!

12 tháng 5 2020

\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)

100=10*10

100=1000:10

100 câu nói hay về cuộc sống 

1 tháng 4 2023

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)

\(A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}\)

\(A< \dfrac{99}{100}\)

Mà \(\dfrac{99}{100}< 1\Rightarrow A< 1\)

1 tháng 4 2023

A=122+132+142+...+11002�=122+132+142+...+11002

A<11⋅2+12⋅3+13⋅4+...+199⋅100�<11⋅2+12⋅3+13⋅4+...+199⋅100

A<11−12+12−13+13−14+...+199−1100�<11−12+12−13+13−14+...+199−1100

A<1−1100�<1−1100

A<99100�<99100

Mà 99100<1⇒A<1

28 tháng 1 2018

Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(\frac{1}{1\cdot2}< \frac{1}{2^2}\)

\(\frac{1}{2\cdot3}< \frac{1}{3^2}\)

\(\frac{1}{3\cdot4}< \frac{1}{4^2}\)

...

\(\frac{1}{99\cdot100}< \frac{1}{100^2}\)

\(\Rightarrow B< A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(B< A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< A=1-\frac{1}{100}=\frac{99}{100}\)

\(\Rightarrow A=\frac{99}{100}>\frac{3}{4}\)

\(\Leftrightarrow B< \frac{3}{4}< A\)

9 tháng 2 2017

TA CÓ 1/2^2=1/4

1/3^2<1/2.3=1/2-1/3

1/4^2<1/3.4=1/3-1/4

1/100^2<1/99.100

=>1/2^2+2/3^2+.....+1/100^2<1/1.2+1/2.3+..+1/99.100

=1-99/100=99/100<1

24 tháng 4 2015

 

Ta thấy:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}