K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

\(a^2+5b^2-\left(3a+b\right)\ge3ab-5\)

\(\Leftrightarrow2a^2+10b^2-2\left(3a+b\right)\ge6ab-10\)

\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)

\(\Leftrightarrow\left(a^2-6a+9\right)+\left(b^2-2b+1\right)+\left(a^2-6ab+9b^2\right)\ge0\)

\(\Leftrightarrow\left(a-3\right)^2+\left(b-1\right)^2+\left(a-3b\right)^2\ge0\)

\(\Leftrightarrowđcpm\)

6 tháng 3 2019

<=>(2a)^2-2.2a.3+9>=0

<=>(2a-3)^2>=0

dấu "=" xảy ra <=>2a-3=0

<=>2a=3

<=>a=2/3

vậy 4a^2-12a+1>=8 dấu "=" xảy ra <=>a=2/3

6 tháng 3 2019

Ta có: \(4a^2-12a+1\)

\(=4a^2-2.2a.3+9-8\)

\(=\left(4a^2-2.2a.3+9\right)-8\)

\(=\left(2a-3\right)^2-8\)

Mà \(\left(2a-3\right)^2\ge0\)

\(\Rightarrow\left(2a-2\right)^2-8\ge-8\left(ĐPCM\right)\)

16 tháng 11 2016

\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)

\(\Leftrightarrow a+b+c-3\sqrt[3]{abc}\ge0\)

\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}\right)^3+c-3\sqrt[3]{ab}\left(\sqrt[3]{a}+\sqrt[3]{b}\right)-3\sqrt[3]{abc}\ge0\)

\(\Leftrightarrow\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\)

Mà ta có \(\hept{\begin{cases}\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)\ge0\\\left(\sqrt[3]{a^2}+\sqrt[3]{b^2}+\sqrt[3]{c^2}-\sqrt[3]{ab}-\sqrt[3]{bc}-\sqrt[3]{ac}\right)\ge0\end{cases}}\)nên cái BĐT là đúng

16 tháng 11 2016
  • Ta có BĐT giữa trung bình nhân và trung bình cộng : \(\frac{a+b}{2}\ge\sqrt{ab}\) ; \(\frac{c+d}{2}\ge\sqrt{cd}\)
  • Trước hết ta chứng minh BĐT \(\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\)

Áp dụng BĐT trên , ta được :  \(\frac{a+b+c+d}{2}=\frac{a+b}{2}+\frac{c+d}{2}\ge2\sqrt{\frac{\left(a+b\right)}{2}.\frac{\left(c+d\right)}{2}}\ge2\sqrt{\sqrt{ab}.\sqrt{cd}}=2\sqrt[4]{abcd}\)

\(\Leftrightarrow\frac{a+b+c+d}{4}\ge\sqrt[4]{abcd}\) (*)

  • Đặt \(d=\frac{a+b+c}{3}\) thì \(a+b+c=3d\) (**)

Từ (*) và (**) ta có : \(\frac{3d+d}{4}\ge\sqrt[4]{abcd}\Leftrightarrow d\ge\sqrt[4]{abcd}\Leftrightarrow d^4\ge abcd\Leftrightarrow d^3\ge abc\Leftrightarrow d\ge\sqrt[3]{abc}\) 

hay \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\) (đpcm)

Bạn tự xét dấu đẳng thức nhé!

\(VT=\left(\dfrac{a}{b+c}+1\right)+\left(\dfrac{b}{c+a}+1\right)+\left(\dfrac{c}{a+b}+1\right)-3\)

\(=\dfrac{1}{2}\left(a+b\right)\left(b+c\right)\left(a+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)-3>=\dfrac{9}{2}-3=\dfrac{3}{2}\)

NV
21 tháng 4 2019

a;b;c dương

\(A=\frac{b}{\sqrt{a}}+\frac{c}{\sqrt{b}}+\frac{a}{\sqrt{c}}+\frac{c}{\sqrt{a}}+\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}\)

\(\Rightarrow A\ge\frac{\left(\sqrt{b}+\sqrt{c}+\sqrt{a}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}+\frac{\left(\sqrt{c}+\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

\(\Rightarrow A\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{a}+\sqrt{b}+\sqrt{c}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)

Dấu "=" xảy ra khi \(a=b=c=1\)

ko có đề làm kiểu gì