cho hàm số y=x2 - 2x -3 . Xác định m để (d) y=mx -2m- 2 cắt (P) tại 2 điểm phân biệt A, B sao cho xA^2 + xB^2 = 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0
hay m<>2
b: \(\left|x_A-x_B\right|< 3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)
\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)
\(\Leftrightarrow\left(m-2\right)^2-3< 0\)
=>(m+1)(m-5)<0
=>-1<m<5
a.
Phương trình hoành độ giao điểm:
\(x^2+6x+3=-2mx-m^2\Leftrightarrow x^2+2\left(m+3\right)x+m^2+3=0\)
\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)=6\left(m+1\right)>0\Rightarrow m>-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-2\left(m+3\right)\\x_Ax_B=m^2+3\end{matrix}\right.\)
\(P=10\left(m+3\right)-2\left(m^2+3\right)=-2m^2+10m+24\)
\(P=-2\left(m-\dfrac{5}{2}\right)^2+\dfrac{73}{2}\le\dfrac{73}{2}\)
\(P_{max}=\dfrac{73}{2}\) khi \(m=\dfrac{5}{2}\)
b.
Pt hoành độ giao điểm:
\(x^2-2x-2=x+m\Leftrightarrow x^2-3x-m-2=0\)
\(\Delta=9+4\left(m+2\right)>0\Rightarrow m>-\dfrac{17}{4}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=3\\x_Ax_B=-m-2\end{matrix}\right.\)
Đồng thời \(y_A=x_A+m\) ; \(y_B=x_B+m\)
\(P=OA^2+OB^2=x_A^2+y_A^2+x_B^2+y_B^2\)
\(=x_A^2+x_B^2+\left(x_A+m\right)^2+\left(x_B+m\right)^2\)
\(=2\left(x_A^2+x_B^2\right)+2m\left(x_A+x_B\right)+2m^2\)
\(=2\left(x_A+x_B\right)^2-4x_Ax_B+2m\left(x_A+x_B\right)+2m^2\)
\(=18-4\left(-m-2\right)+6m+2m^2\)
\(=2m^2+10m+26=2\left(m+\dfrac{5}{2}\right)^2+\dfrac{27}{2}\ge\dfrac{27}{2}\)
Dấu "=" xảy ra khi \(m=-\dfrac{5}{2}\)
Phương trình hoành độ giao điểm: m x - 1 x + 2 = 2 x - 1 ( 1 )
Điều kiện: x ≠ - 2 Khi đó
(1) Suy ra: mx-1=(2x-1) (x+2) hay 2x2-(m-3)x-1=0 (2)
Đường thẳng d cắt (C) tại hai điểm phân biệt A; B khi và chỉ khi (1) có hai nghiệm phân biệt khi và chỉ khi ( 2) có hai nghiệm phân biệt khác -2
⇔ ∆ = [ - ( m - 3 ) ] 2 + 8 > 0 8 + 2 m - 6 - 1 ≠ 0 ⇔ m ≠ - 1 2 ( * )
Đặt A( x1; 2x1-1); B( x2; 2x2-1) với x1; x2 là hai nghiệm của phương trình (2).
Theo định lý Viet ta có
x 1 + x 2 = m - 3 2 x 1 x 2 = - 1 2 , k h i đ ó
A B = ( x 1 - x 2 ) 2 + 4 ( x 1 - x 2 ) 2 = 10 ⇔ 5 [ ( x 1 + x 2 ) 2 - 4 x 1 x 2 ] = 10 ⇔ ( m - 3 2 ) 2 + 2 = 2 ⇔ m = 3
thỏa (*).
Vậy giá trị m cần tìm là m =3.
Xét phương trình hoành độ ta có :\(mx^2-2x+m^2=0\)
\(\Delta=b^2-4ac=4-4m^3\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(4-4m^3\ge0\)
\(4\ge4m^3\)
\(1\ge m^3\)
\(1\ge m\)
Theo Vi-ét ta có \(\hept{\begin{cases}xA+xB=\frac{-b}{a}=\frac{2}{m}\\xAxB=\frac{c}{a}=m\end{cases}}\)
Vì m >0 nên \(xAxB>0\)
Vậy phương trình có hai nghiệm cùng dấu nên A B nằm cùng 1 phía trục tung
Ta có :\(\frac{2}{xA+xB}+\frac{1}{4xAxB+1}\)
\(\frac{2}{\frac{2}{m}}\)\(+\frac{1}{4m+1}\)= \(m+\frac{1}{4m+1}=\frac{m\left(4m+1\right)}{4m+1}+\frac{1}{4m+1}\)=\(\frac{4m^2+m+1}{4m+1}=P\)
\(4m^2+m+1=P\left(4m+1\right)\)
\(4m^2+m+1=4mP+P\)
\(4m^2+m+1-4mP-P=0\)
\(4m^2+m-4mP+1-P=0\)
\(4m^2+m\left(1-4P\right)+1-P=0\)
\(\Delta=b^2-4ac=\left(1-4P\right)^2-16\left(1-P\right)\)
\(=1-8P+16P^2-16+16P\)
\(=-15+8P+16P^2\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(16P^2+8P-15\ge0\)
\(\orbr{\begin{cases}P\le\frac{-5}{4}\\P\ge\frac{3}{4}\end{cases}}\)
Vậy minP =\(\frac{3}{4}\)
Dấu = xảy ra \(< =>\)\(\frac{4m^2+m+1}{4m+1}=P\)
\(\frac{4m^2+m+1}{4m+1}=\frac{3}{4}\)
\(4\left(4m^2+m+1\right)=3\left(4m+1\right)\)
\(16m^2+4m+4-12m-3=0\)
\(16m^2-8m+1=0\)
\(m=\frac{1}{4}\)
Vậy minP=\(\frac{3}{4}\)khi và chỉ khi \(m=\frac{1}{4}\)
\(x^2-2x-3=mx-2m-2\)
\(x^2-2x+2m-mx-1=0\)
\(x^2-\left(m+2\right)x+2m-1=0\)
\(\Delta=\left(m+2\right)^2-4\left(2m-1\right)\)
\(\Delta=m^2+4m+4-8m+4\)
\(\Delta=m^2-4m+8\)
\(\Delta=\left(m-2\right)^2+4>0\)<=> có 2 n0 pb
\(\hept{\begin{cases}xA+xB=-\frac{b}{a}=\frac{m+2}{1}=m+2\\xA.xB=\frac{c}{a}=2m-1\end{cases}}\)
\(xA^2+xB^2=10\)
\(\left(xA+xB\right)^2-2xA.xB=10\)
\(\left(m+2\right)^2-2\left(2m-1\right)=10\)
\(m^2+2m+4-4m+2=10\)
\(m^2-2m+6=10\)
\(m^2-2m-4=0\)
\(\Delta=2^2-\left(-16\right)=20\)
\(\sqrt{\Delta}=2\sqrt{5}\)
\(x_1=\frac{2+2\sqrt{5}}{2}=1+\sqrt{5}\)
\(x_2=\frac{2-2\sqrt{5}}{2}=1-\sqrt{5}\)