Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0
hay m<>2
b: \(\left|x_A-x_B\right|< 3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)
\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)
\(\Leftrightarrow\left(m-2\right)^2-3< 0\)
=>(m+1)(m-5)<0
=>-1<m<5
Xét phương trình hoành độ ta có :\(mx^2-2x+m^2=0\)
\(\Delta=b^2-4ac=4-4m^3\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(4-4m^3\ge0\)
\(4\ge4m^3\)
\(1\ge m^3\)
\(1\ge m\)
Theo Vi-ét ta có \(\hept{\begin{cases}xA+xB=\frac{-b}{a}=\frac{2}{m}\\xAxB=\frac{c}{a}=m\end{cases}}\)
Vì m >0 nên \(xAxB>0\)
Vậy phương trình có hai nghiệm cùng dấu nên A B nằm cùng 1 phía trục tung
Ta có :\(\frac{2}{xA+xB}+\frac{1}{4xAxB+1}\)
\(\frac{2}{\frac{2}{m}}\)\(+\frac{1}{4m+1}\)= \(m+\frac{1}{4m+1}=\frac{m\left(4m+1\right)}{4m+1}+\frac{1}{4m+1}\)=\(\frac{4m^2+m+1}{4m+1}=P\)
\(4m^2+m+1=P\left(4m+1\right)\)
\(4m^2+m+1=4mP+P\)
\(4m^2+m+1-4mP-P=0\)
\(4m^2+m-4mP+1-P=0\)
\(4m^2+m\left(1-4P\right)+1-P=0\)
\(\Delta=b^2-4ac=\left(1-4P\right)^2-16\left(1-P\right)\)
\(=1-8P+16P^2-16+16P\)
\(=-15+8P+16P^2\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(16P^2+8P-15\ge0\)
\(\orbr{\begin{cases}P\le\frac{-5}{4}\\P\ge\frac{3}{4}\end{cases}}\)
Vậy minP =\(\frac{3}{4}\)
Dấu = xảy ra \(< =>\)\(\frac{4m^2+m+1}{4m+1}=P\)
\(\frac{4m^2+m+1}{4m+1}=\frac{3}{4}\)
\(4\left(4m^2+m+1\right)=3\left(4m+1\right)\)
\(16m^2+4m+4-12m-3=0\)
\(16m^2-8m+1=0\)
\(m=\frac{1}{4}\)
Vậy minP=\(\frac{3}{4}\)khi và chỉ khi \(m=\frac{1}{4}\)
Lời giải:
PT hoành độ giao điểm:
$x^2-2mx-(2m+1)=0(*)$
Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$
$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$
$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$
Khi đó:
$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$
$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix}
0\leq m< 1\\
\sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)
Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)
a) Xét phương trình hoành độ giao điểm
\(x^2=-x+2\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\Rightarrow y=1\\x=-2\Rightarrow y=4\end{matrix}\right.\)
Vậy tọa độ giao điểm là \(\left(1;1\right)\) và \(\left(-2;4\right)\)
\(x^2-2x-3=mx-2m-2\)
\(x^2-2x+2m-mx-1=0\)
\(x^2-\left(m+2\right)x+2m-1=0\)
\(\Delta=\left(m+2\right)^2-4\left(2m-1\right)\)
\(\Delta=m^2+4m+4-8m+4\)
\(\Delta=m^2-4m+8\)
\(\Delta=\left(m-2\right)^2+4>0\)<=> có 2 n0 pb
\(\hept{\begin{cases}xA+xB=-\frac{b}{a}=\frac{m+2}{1}=m+2\\xA.xB=\frac{c}{a}=2m-1\end{cases}}\)
\(xA^2+xB^2=10\)
\(\left(xA+xB\right)^2-2xA.xB=10\)
\(\left(m+2\right)^2-2\left(2m-1\right)=10\)
\(m^2+2m+4-4m+2=10\)
\(m^2-2m+6=10\)
\(m^2-2m-4=0\)
\(\Delta=2^2-\left(-16\right)=20\)
\(\sqrt{\Delta}=2\sqrt{5}\)
\(x_1=\frac{2+2\sqrt{5}}{2}=1+\sqrt{5}\)
\(x_2=\frac{2-2\sqrt{5}}{2}=1-\sqrt{5}\)