K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2019

\(a+b+c=3\)

\(\Leftrightarrow a^3+b^3+c^3=27-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(\Leftrightarrow a^3+b^3+c^3=27-3\left(3-c\right)\left(3-a\right)\left(3-b\right)\)

\(\Leftrightarrow a^3+b^3+c^3=27-3\left[\left(9-3a-3c+ca\right)\left(3-b\right)\right]\)

\(\Leftrightarrow a^3+b^3+c^3=27-3\left(27-9b-9a+3ab-9c+3cb+3ca-abc\right)\)

....

NV
28 tháng 3 2023

Ta có:

\(ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2=3\)

\(\Rightarrow\dfrac{a}{\sqrt{a^2+3}}\le\dfrac{a}{\sqrt{a^2+ab+bc+ca}}=\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

Tương tự:

\(\dfrac{b}{\sqrt{b^2+3}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{b}{b+c}\right)\) ; \(\dfrac{c}{\sqrt{c^2+3}}\le\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{b+c}\right)\)

Cộng vế:

\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{c}{a+c}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)

\(P_{max}=\dfrac{3}{2}\) khi \(a=b=c=1\)

20 tháng 4 2023

Thiếu điều kiện a,b,c rồi bạn.

NV
1 tháng 3 2022

Với các số dương x;y ta có:

\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

Áp dụng:

\(\Rightarrow P=\dfrac{1}{a^3+b^3+abc}+\dfrac{1}{b^3+c^3+abc}+\dfrac{1}{c^3+a^3+abc}\le\dfrac{1}{ab\left(a+b\right)+abc}+\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{a}{ca\left(c+a\right)+abc}\)

\(\Rightarrow P\le\dfrac{abc}{ab\left(a+b+c\right)}+\dfrac{abc}{bc\left(a+b+c\right)}+\dfrac{abc}{ca\left(a+b+c\right)}\)

\(\Rightarrow P\le\dfrac{c}{a+b+c}+\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)

\(P_{max}=1\) khi \(a=b=c=1\)

NV
26 tháng 8 2021

\(P^2=\left(a-b\right)^2\left(b-c\right)^2\left(a-c\right)^2\)

Không mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\) \(\Rightarrow\left\{{}\begin{matrix}\left(b-c\right)^2\le b^2\\\left(a-c\right)^2\le a^2\end{matrix}\right.\)

\(\Rightarrow P^2\le\left(a-b\right)^2a^2b^2=\dfrac{1}{4}\left(a^2-2ab+b^2\right).\left(2ab\right).\left(2ab\right)\le\dfrac{1}{108}\left(a^2-2ab+b^2+2ab+2ab\right)^3\)

\(\Rightarrow P^2\le\dfrac{1}{108}\left(a+b\right)^6\le\dfrac{1}{108}\left(a+b+c\right)^6=\dfrac{27}{4}\)

\(\Rightarrow P\le\dfrac{3\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3-\sqrt{3}}{2};\dfrac{3+\sqrt{3}}{2};0\right)\) và các hoán vị

27 tháng 8 2021

thầy ơi em mới học lớp 9 thôi, e chưa học hoán vị. Thầy có cách nào khác giải bài toán này theo cách cấp 2 ko ạ