K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2021

1.

A có tọa độ là nghiệm hệ: \(\left\{{}\begin{matrix}x-y-2=0\\7x-y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-3\end{matrix}\right.\Rightarrow A=\left(-1;-3\right)\)

Phương trình đường thẳng AB: \(\dfrac{x+1}{-5}=\dfrac{y+3}{7}\Leftrightarrow7x-5y+22=0\)

Đường thẳng BC đi qua B và vuông góc với AH có phương trình: \(x+7y-22=0\)

 

28 tháng 6 2023

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

28 tháng 6 2023

Chị độc giải sau khi em biết làm thôi à.

11 tháng 7 2017

Bài 1:

\(P=2-5x^2-y^2-4xy+2x=3-\left(1-2x+x^2\right)-\left(4x^2+4xy+y^2\right)=3-\left(1-x\right)^2-\left(2x+y\right)^2\)

\(\Rightarrow GTLN=3\Leftrightarrow\hept{\begin{cases}1-x=0\\2x+y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)

8 tháng 2 2018

Mk làm cho bài bđt nha

Bài 2 : 

Có : (x-y)^2 >= 0

<=> x^2-2xy+y^2 >= 0

<=> x^2+y^2 >= 2xy

Tương tự : y^2+z^2 >= 2yz ; z^2+x^2 >= 2zx

=> 2.(x^2+y^2+z^2) >= 2xy+2yz+2zx

<=> x^2+y^2+z^2 >= xy+yz+zx

<=> x^2+y^2+z^2+2xy+2yz+2zx >= 3.(xy+yz+zx)

<=> (x+y+z)^2 >= 3.(xy+yz+zx)

=> ĐPCM

Dấu "=" xảy ra <=> x=y=z

Tk mk nha