K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2019

\(x^3-y^3=9< =>\left(x-y\right)^3+3xy\left(x-y\right)=9< =>3^3+3.xy.3=9< =>\)xy=-2

x-y =3 <=> x= y+ 3 => y(y+3) = -2 <=> y2 +3y +2 =0 <=> y= -1; x= y+3 = 2 hoặc y = -2; x= 1

vậy hệ có 2 nghiệm (x;y) = (2; -1); (1; -2)

9 tháng 12 2021

\(\left\{{}\begin{matrix}3x+y=3\\3x-y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=0\\3x+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)

9 tháng 12 2021

\(\left\{{}\begin{matrix}3x+y=3\\3x-y=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+y+3x-y=3-3\\3x-y=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6x=0\\3x-y=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\3.0-y=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=3\end{matrix}\right.\)

19 tháng 4 2017

Gọi A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3

Trước hết ta thu gọn đa thức :

A = x2 + 2xy – 3x3 + 2y3 + 3x3 – y3

= (– 3x3+ 3x3) + x2 + 2xy + (2y3– y3)

= 0 + x2 + 2xy + y3.

= x2 + 2xy + y3.

Thay x = 5 ; y = 4 vào A ta được :

A = 52+ 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy giá trị biểu thức x2 + 2xy – 3x3 + 2y3 + 3x3 – y3 tại x = 5 ; y = 4 bằng 129.

Bài làm

Thep phương pháp đưa về đồng bậc, có:

\(\hept{\begin{cases}4x^3-y^3=x+2y\\52x^2-82xy+21y^2=-9\end{cases}}\)

\(\Rightarrow\left(4x^3-y\right)\left(-9\right)=\left(52x^2-82xy+21y^2\right)\left(x+2y\right)\)

\(\Leftrightarrow8x^3+2x^2y-13xy^2+3y^3=0\)

\(\Leftrightarrow\left(4x-y\right)\left(x-y\right)\left(2x+3y\right)=0\)

\(\Rightarrow\)4x - y = 0 hoặc x - y = 0 hoặc 2x + 3y = 0

\(\Leftrightarrow\)4x = y hoặc x = y hoặc 2x = -3y

Bạn thay từng trường hợp vào hệ phương trình nha thì bạn sẽ thấy x = y ( thỏa mãn )

<=> ( x,y ) = ( 1; 1 ) ; ( -1 ; -1 ) là nghiệm của hpt.

~ Do tối rồi nên mik không thay được, bạn thông cảm nha ~

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{4}=\dfrac{y}{-5}=\dfrac{-3x+2y}{-12-10}=\dfrac{55}{-22}=\dfrac{-5}{2}\)

Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-20}{2}=-10\\y=\dfrac{25}{2}\end{matrix}\right.\)

b: Ta có: \(\dfrac{x}{y}=\dfrac{-7}{4}\)

nên \(\dfrac{x}{-7}=\dfrac{y}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{-7}=\dfrac{y}{4}=\dfrac{4x-5y}{-28-20}=\dfrac{72}{-48}=\dfrac{-3}{2}\)

Do đó: \(\left\{{}\begin{matrix}x=\dfrac{21}{2}\\y=\dfrac{-12}{2}=-6\end{matrix}\right.\)

4 tháng 10 2021

c) \(\dfrac{x}{-3}=\dfrac{y}{8}\)   

\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}=-\dfrac{44}{\dfrac{5}{-9+64}}=-\dfrac{44}{\dfrac{5}{55}}=-484\)

10 tháng 9 2021

a) thay x=4 và y=5 vào biểu thức ta đc :129

b) tương tự....To be continued

 

 

a:\(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)

\(=x^2+2xy+y^3\)

\(=5^2+2\cdot5\cdot4+4^3\)

\(=25+40+64=129\)

26 tháng 12 2015

\(\int^{x\sqrt{y}+y\sqrt{x}=30}_{x\sqrt{x}+y\sqrt{y}=35}\Leftrightarrow\int^{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=30}_{\left(\sqrt{x}+\sqrt{y}\right)^3-3\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=35}\)

\(\Leftrightarrow\int^{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=30}_{\left(\sqrt{x}+\sqrt{y}\right)^3-90=35}\Leftrightarrow\int^{\sqrt{xy}=6}_{\sqrt{x}+\sqrt{y}=5}\)