Cho tam giác ABC vuông tại A ( AC = 2AB), trên tia đối của tia BA lấy điểm D sao cho BD = BA. Từ D và C lần lượt vẽ các đường thẳng song song với AC và AB, chúng cắt nhau tại E.
a) C/m tứ giác ACED là hình vuông
b) Gọi F là trung điểm của ED. C/m ΔABC=ΔDFA
c) Gọi M là giao điểm của AF và BC. C/m BC vuông góc với AF
d) C/m EM = AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-a+a^2\right)\left(1-b+b^2\right)=1-b+b^2-a+ab-ab^2+a^2-a^2b+a^2b^2.\)
\(=\frac{2-2a-2b+2b^2+2ab+2a^2-2ab\left(a+b\right)+2a^2b^2}{2}\)\(=\frac{\left(a-b\right)^2+1+a^2b^2+\left(1-a\right)^2\left(1-b\right)^2}{2}\ge\frac{1+a^2b^2}{2}\)
Tương Tự : \(\left(1-c+c^2\right)\left(1-d+d^2\right)\ge\frac{1+c^2d^2}{2}\)
(1-a+a2) (1-b+b2) = 1-b+b2-a+ab-ab2+a2-a2b+a2b2.
=2-2a-2b+2b2+2ab+2a2-2ab(a+b)+2a2b2 =(a-b)2+1+a2b2+(1-a)2(1-b)2> 1+a2b2 2 2 Tương Tự:(1-c+c2) (1-d+d2) > 1+c2d2 2
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔABM=ΔCDM
b: ΔABM=ΔCDM
nên AB=CD và góc ABM=góc CDM
=>AB//CD
=>CE vuông góc với AC
=>AC vuông góc DE
a: Xét ΔBCD có
BA vừa là đường cao, vừa là trug tuyến
=>ΔBCD cân tại B
=>BD=BC
b: Xét ΔBAC vuông tại A và ΔEAD vuông tại A có
AC=AD
góc BCA=góc EDA
=>ΔBAC=ΔEAD
=>BA=EA
=>A là trung điểm của BE
mà A là trung điểm của CD
nên BDEC là hình bình hành
=>ED//BC