K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 10 2019

Do O là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_O=\frac{x_A+x_C}{2}\\y_O=\frac{y_A+y_C}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=-x_A=-3\\y_C=-y_A=-1\end{matrix}\right.\)

Tương tự: \(\left\{{}\begin{matrix}x_D=-x_B=-1\\y_D=-y_B=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}C\left(-3;-1\right)\\D\left(-1;-2\right)\end{matrix}\right.\)

b/ Ta có \(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow\) đường thẳng AB nhận \(\overrightarrow{n_{AB}}=\left(1;2\right)\) là 1 vtpt

Phương trình AB:

\(1\left(x-3\right)+2\left(y-1\right)=0\Leftrightarrow x+2y-5=0\)

\(\overrightarrow{DA}=\left(4;3\right)\Rightarrow\) đường thẳng AD nhận \(\overrightarrow{n}=\left(3;-4\right)\) là 1 vtpt

Phương trình AD:

\(3\left(x-3\right)-4\left(y-1\right)=0\Rightarrow3x-4y-5=0\)

Hai cạnh còn lại bạn tự viết tương tự

NV
22 tháng 11 2019

\(\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{AC}-\overrightarrow{AB}-\overrightarrow{BD}\)

\(\Rightarrow2\overrightarrow{AB}=\overrightarrow{AC}-\overrightarrow{BD}\Rightarrow\overrightarrow{AB}=\frac{1}{2}\left(\overrightarrow{AC}-\overrightarrow{BD}\right)=\left(5;-\frac{7}{2}\right)\)

22 tháng 11 2019

A,(2;1) B(-2;-1) C(-5;4) D (5;-4)

22 tháng 11 2019

Áp dụng quy tắc hình bình hành ta có:

\(\left\{{}\begin{matrix}\overrightarrow{AB}+\overrightarrow{AD}=\widehat{AC}\\\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow{BD}\end{matrix}\right.\)

Từ hệ trên suy ra:
\(\overrightarrow{2AB}=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)-\left(\overrightarrow{AD}-\overrightarrow{AB}\right)=\overrightarrow{AC}-\overrightarrow{BD}\)

\(\Leftrightarrow\overrightarrow{AB}=\frac{1}{2}\left(\overrightarrow{AC}-\overrightarrow{BD}\right)=\frac{1}{2}\left[7-\left(-3\right);-3-4\right]=\left(5;\frac{-7}{2}\right)\)

14 tháng 4 2017

Đáp án B

Gọi hình bình hành là ABCD

d:x+ y-1 = 0, : 3x – y+ 5= 0  .

Không làm mất tính tổng quát giả sử

 

Ta có :  I(3;3)  là tâm hình bình hành nên C(7;4)  

=> Đường thẳng ACcó pt là: x- 4y + 9= 0.

Do  => Đường thẳng BC đi qua điểm C và có vtpt  có pt là: 3x – y- 17= 0.

Khi đó :

Ta có:

16 tháng 6 2017

Đáp án B

 => Đường thẳng AB có pt là: x- y – 5= 0.

Gọi G(a;3a- 8) suy ra C( 3a- 5; 9a -19).

Ta có: 

Vậy C( 1 ; -1) và  C( -2 ; 10)

21 tháng 1 2021

a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)

\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

21 tháng 1 2021

Còn phần b,c,d,e nx bn C:

15 tháng 7 2017

Cho hình vẽ 

A B C D I F

Tam giác BEC cân và có \(\widehat{BEC}=150^o\) \(\Rightarrow\) tam giác BEC cân tại E 

Gọi H là hình chiếu của E lên AD \(\Rightarrow\) H là trung điểm AD và HE \(=\) d E; AD \(=\) 3

Đặt cạnh hình vuông là \(AB=x\) 

Tam giác BEC cân tại E có \(\widehat{BEC}=150^o\Rightarrow\widehat{BEC}=15^o\) . Gọi I là trung điểm của \(BC\Rightarrow BI=\frac{x}{2};EI=x-3\)

Tam giác BIE vuông tại I có góc \(\widehat{EBI}=15^o\Rightarrow tan15^o=\frac{EI}{BI}=\frac{2x-6}{x}\)

\(\Rightarrow2-\sqrt{3}=\frac{2x-6}{x}\Leftrightarrow x=2\sqrt{3}\) 

Phương trình đường thẳng EH qua điểm E và vuông góc với \(AD\Rightarrow EH\div4x+3y+4=0\)

Đường thằng \(AB\\ EH\Rightarrow AB\) có dạng \(''d''\div4x+3y+a=0\)

Ta có d \(''E,AB''=\frac{⊥a-4⊥}{5}=BI=\sqrt{3}\Leftrightarrow a=4⊥5\sqrt{3}\)

Phương trình đường thẳng AB là \(''d''\div4x+3y+4⊥5\sqrt{3}=0\)

P/s; Bộ khó lắm à .