cho hình tứ giác ABCD gọi E là trung điếm của AB,B là trung điểm của cCD cm rằng DE =BF
Giúp mình với mai mình kiểm tra rồi !!!
@Đạt Quần Hoa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình nhé
a) Xét tg BEDF có
EB = DF ( Cái này bạn tự c/m nhé )
EB // DF ( AB// DC, EB thuộc AB, DF thuộc DC)
==> BEDF hbh
b) Xét tg AEFD có
AE = DF ( tự c/m)
AE // DF ( tự c/m)
==> AEFD hbh
mà có AD = AE (tự c/m)
==> AEFD hthoi ==> góc M = 90 độ (1)
Xét tam giác AFB có AE = EB = EF ( EF = AE do AEFD hthoi)
==> AFB tam giác vuông ==> góc F = 90 độ (2)
từ (1) và (2) ==> DE // HB ( tự hiểu nhé )
==> DEBH hthang
c) c/m tượng tự ta có EBCF hthoi ==> góc N = 90
ta có góc N= góc M = góc F = 90 độ ==> ENFM hcn
Đúng like nhé
a: Xét tứ giác ADFE có
AE//DF
AE=DF
Do đó: ADFE là hình bình hành
mà AE=AD
nên ADFE là hình thoi
mà \(\widehat{EAD}=90^0\)
nên ADFE là hình vuông
b: Ta có: ADFE là hình vuông
nên \(\widehat{EFD}=90^0\) và AF vuông góc với DE tại trung điểm của mỗi đường
Xét tứ giác BEFC có
BE//FC
BE=FC
Do đó: BEFC là hình bình hành
mà BC=BE
nên BEFC là hình thoi
mà \(\widehat{EBC}=90^0\)
nên BEFC là hình vuông
=>EC vuông góc với BF tại trung điểm của mỗi đường
Xét ΔEDC có
EF là đường trung tuyến
EF=DC/2
Do đó: ΔEDC vuông tại E
Xét ΔEDC có
EF là đường cao
EF là đường trung tuyến
DO đó: ΔEDC cân tại E
=>ED=EC
=>EM=EN
Xét tứ giác EMFN có \(\widehat{EMF}=\widehat{ENF}=\widehat{MEN}=90^0\)
nên EMFN là hình chữ nhật
mà EM=EN
nên EMFN là hình vuông
a) E, F là trung điểm AB, CD ⇒ AE = EB = AB/2, DF = FC = CD/2.
Lại có AB = CD = 2.AD = BC.
⇒ AE = EB = BC = CF = FD = DA.
+ Tứ giác ADFE có AE // DF, AE = DF
⇒ ADFE là hình bình hành.
Hình bình hành ADFE có Â = 90º
⇒ ADFE là hình chữ nhật.
Hình chữ nhật ADFE là hình chữ nhật có AE= AD
⇒ ADFE là hình vuông.
b) Tứ giác DEBF có EB // DF, EB = DF nên là hình bình hành
Do đó DE // BF
Tương tự: AF // EC
Suy ra EMFN là hình bình hành
Theo câu a, ADFE là hình vuông nên ME = MF, ME ⊥ MF.
Hình bình hành EMFN có M̂ = 90º nên là hình chữ nhật.
Lại có ME = MF nên EMFN là hình vuông.
Xét tam giác ABM :
K là trung điểm của AB
E là trung điểm của AM
=) KE là đường trung bình của tam giác ABM
=) KE = \(\frac{1}{2}\)BM và KE // BM
Xét tam giác ACM :
I là trung điểm của AC
E là trung điểm của AM
=) EI là đường trung bình của tam giác ACM
=) EI = \(\frac{1}{2}\)MC và EI // MC
Mà MB=MC (vì AM là đường trung tuyến của tam giác ABC )
=) KE =EI và 3 điểm K,E,I thẳng hàng
=) E là trung điểm của KI
Xét tứ giác AKMI có :
2 đường chéo cắt nhau tại trung điểm E
=) AKMI là hình bình hành (1)
Do K là trung điểm của AB =) AK=KB
Do I là trung điểm của AC =) AI = IC
Mà AB = AC (vì tam giác ABC cân)
=) AK = AI (2)
Từ (1) và (2) =) AKMI là hình thoi
b) Do N đối xứng với M qua I
=) MI=IN
=) I là trung điểm của MN
Xét tứ giác AMCN có :
2 đường chéo AC và MN cắt nhau tại trung điểm I
=) AMCN là hình bình hành (1)
Xét tam giác cân ABC có :
AM là đường trung tuyến
=) AM là đường cao của tam giác ABC
=) \(\widehat{AMC}\)=900 (2)
Từ (1) và (2) =) AMCN là hình chữ nhật