K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

a, x2 + 10x + 27

Đặt A = x2 + 2. x. 5 + 52 + 2

= ( x + 5 )2 + 2

Vì ( x + 5 )2 \(\ge\)0 với mọi x

=> ( x + 5 )2 + 2 \(\ge\)2 với mọi x

Hay A \(\ge\)2

Dấu " = " xảy ra khi:

( x + 5 )2 = 0

x + 5 = 0

x = - 5

Vậy Min A = 2 khi x = - 5

b, x2 + x + 7

Đặt B = x2 + x + 7

\(=x^2+x+\frac{1}{4}+\frac{27}{4}\)

\(=\left[x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{27}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\)với mọi x

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{27}{4}\ge\frac{27}{4}\)với mọi x

Hay B \(\ge\frac{27}{4}\)

Dấu " = " xảy ra khi:

\(\left(x+\frac{1}{2}\right)^2=0\)

\(x+\frac{1}{2}=0\)

\(x=-\frac{1}{2}\)

Vậy Min B = \(\frac{27}{4}\)khi x = \(-\frac{1}{2}\)

29 tháng 9 2019

a) x2 + 10 x + 27 =( x+ 2. 5 . x + 52 ) + 2 = ( x + 5 ) 2 + 2 

Vì ( x + 5 ) 2 \(\ge\) 0 với mọi x nên ( x + 5 ) 2 + 2 \(\ge\) 2 với mọi x

Dấu bằng xảy ra \(\Leftrightarrow\)x + 5 = 0 \(\Leftrightarrow\) x = -5

b) x2 + x + 7 = 0 \(\Leftrightarrow\) x2 + 2. x . \(\frac{1}{2}\)+  \(\left(\frac{1}{2}\right)^2\) + \(\frac{27}{4}\) = 0 \(\Leftrightarrow\)( x + 1/2) 2 + 27/4  = 0

Vì  ( x + 1/2 )2 \(\ge\) 0 với mọi x nên ( x + 1/2) 2 + 27/4 \(\ge\)27/4 với mọi x

Dấu bằng xảy ra \(\Leftrightarrow\)x+ 1/2 = 0 \(\Leftrightarrow\) x = ---\(\frac{1}{2}\) 

c + d ) Tương tự a, b

e) x2 + 14 x + y2 - 2y +7 = 0 \(\Leftrightarrow\) ( x+ 2. x. 7 + 72 ) + ( y2 -- 2y + 1 ) -43 = 0 \(\Leftrightarrow\) ( x + 7 ) 2 + ( y -- 1 )  --43 = 0 ( 1 ) 

Vì ( x + 7 )2 \(\ge\)  0 và ( y -- 1 )2 \(\ge\) 0 với mọi x, y nên  ( 1 ) \(\ge\) --43 với mọi x, y

Dấu bằng xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x+7=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=-7\\y=1\end{cases}}\)

31 tháng 10 2022

a: =x^2+10x+25+2=(x+5)^2+2>=2

Dấu = xảy ra khi x=-5

b: =x^2+x+1/4+27/4

=(x+1/2)^2+27/4>=27/4

Dấu = xảy ra khi x=-1/2

c: =x^2-12x+36+1=(x-6)^2+1>=1

Dấu = xảy ra khi x=6

d: =x^2-3x+9/4+11/4=(x-3/2)^2+11/4>=11/4

Dấu = xảy ra khi x=3/2

27 tháng 7 2017

a.A= \(x^2+10x+27\)

\(=x^2+2.x.5+25+2\)

\(\left(x+5\right)^2+2\ge2\forall x\)

Dấu " = " xảy ra <=> x + 5 = 0

=> x = -5

Vậy Min A = 2 <=> x = -5

b.B = \(x^2-12x+37\)

\(=x^2-2.x.6+36+1\)

\(=\left(x-6\right)^2+1\ge1\forall x\)

Dấu " = " xảy ra <=> x - 6 = 0

=> x = 6

Vậy Min B = 1 <=> x = 6

c. \(x^2+x+7\)

\(=x^2+2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{27}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}\forall x\)

Dấu " =" xảy ra <=> \(x+\dfrac{1}{2}=0\)

\(x=\dfrac{-1}{2}\)

Vậy Min C = \(\dfrac{27}{4}\Leftrightarrow x=\dfrac{-1}{2}\)

27 tháng 7 2017

Hà An bn ơi lm giúp mk mấy cau còn lại vs mai mk đi hok rồi

24 tháng 5 2017

x^2 + 14x + y^2 - 2y + 7

( x^2 + 14 x+ 49 ) + ( y - 2y + 1) -43

( x-7)^2 + ( y-1)^2 - 43 

 Vậy Min của biểu thức là : -43 khi \(\hept{\begin{cases}\left(x-7\right)^2\\\left(y-1\right)^2=0\end{cases}}=0\) \(\Leftrightarrow\hept{\begin{cases}x-7=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=1\end{cases}}\)

24 tháng 5 2017

Phần b cũng tương tự như vậy nhé!

6 tháng 7 2016

a) D=x2-3x+5=x2-3x+2,25+2,75=(x-1,5)2+2,75

Vì (x-1,5)2luôn lớn hơn hoặc bằng 0 nên để D nhỏ nhất thì (x-1,5)2cũng phải nhỏ nhất hay (x-1,5)2=0 =>x=1,5

b)-43

6 tháng 7 2016

bài dạng này chỉ có các bn thi violympic làm dc thui

tui làm phần E  nếu h sẽ lam hêt k thi bye

E = (x+7)2 + ( y-1)2 -49 -1 +7 

GTNN:  E = -43

4 tháng 7 2021

a,\(x^2-6x-17=x^2-2\cdot3x+9-26=\left(x-3\right)^2-26\ge-26\)

b, \(x^2-10x=x^2-2\cdot5x+25-25=\left(x-5\right)^2-25\ge-25\)

c,\(3x^2-12x+5=3x^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+12-7=\left(\sqrt{3}x-2\sqrt{3}\right)^2-7\ge-7\)

d,\(2x^2-x-1=2x^2-2\cdot\sqrt{2}x\cdot\dfrac{1}{2\sqrt{2}}+\dfrac{1}{8}-\dfrac{9}{8}=\left(\sqrt{2}x-\dfrac{1}{2\sqrt{2}}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)

e,\(x^2+y^2-8x+4y+27=x^2-2\cdot4x+16+y^2+2\cdot2y+4+7=\left(x-4\right)^2+\left(y+2\right)^2+7\ge7\)

f,\(x\left(x-6\right)=x^2-6x=x^2-2\cdot3x+9-9=\left(x-3\right)^2-9\ge-9\)

h,\(\left(x-2\right)\cdot\left(x-5\right)\cdot\left(x^2-7x-10\right)=\left(x^2-7x+10\right)\left(x^2-7x-10\right)=\left(x^2-7x\right)^2-100\ge-100\)

Mình giúp tính biểu thức thôi

còn lại bạn tự làm nhé

27 tháng 7 2016

B=[(x - 2)(x - 5)](x2– 7x - 10) 
= (x2- 7x + 10)(x2 - 7x - 10)
= (x2 - 7x)2- 102
= (x2 - 7x)2 - 100

=>(x2-7x)2\(\ge\) 100

GTNN = -100 \(\Rightarrow\) x2 - 7x = 0 \(\Leftrightarrow\) x(x-7) = 0 \(\Leftrightarrow\) x = 0 hoặc x = 7

27 tháng 7 2016

B = x2 - 4xy + 5y2 + 10x - 22y + 28 
= x2 - 4xy + 4y2+ y2+ 10(x-2y) + 28 
= (x - 2y)2+ 10(x-2y) + 25 + y2- 2y+ 1 + 2 
= (x-2y + 5)2 + (y-1)2 + 2\(\ge\) 2 
GTNN B = 2, khi y=1, x=-3