Tìm các số nguyên tố p,q,r thỏa mãn p2+q2+r2=6p+4q+2r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow p^2-6p+9+q^2-4q+4+r^2-2r+1=14\)
\(\Leftrightarrow\left(p-3\right)^2+\left(q-2\right)^2+\left(r-1\right)^2=14=1+4+9\)
\(\left\{{}\begin{matrix}\left(p-3\right)^2=4\\\left(q-2\right)^2=9\\\left(r-1\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}p=5\\q=5\\r=2\end{matrix}\right.\)
Xét p=2
⇒ \(2^2+2^2=4+4=8\left(L\right)\)
Xét p=3
⇒ \(2^3+3^2=8+9=17\left(TM\right)\)
Xét p>3
⇒ p2 + 2p = (p2 – 1) + (2p + 1 )
Vì p lẻ và p không chia hết cho 3 nên (p2–1)⋮3 và (2p+1)⋮3.
Do đó: 2p+p2là hợp số (L)
Vậy với p = 3 thì 2p + p2 là số nguyên tố.
Lời giải:
$pq=2r^2+4\vdots 2$ nên trong 2 số $p,q$ phải có ít nhất 1 số chẵn.
Không mất tổng quát giả sử $p$ chẵn. Do $p$ nguyên tố nên $p=2$
Khi đó:
$2q-2r^2=4$
$q-r^2=2$
$q=r^2+2$
Nếu $r$ chia hết cho $3$ thì $r=3$
$\Rightarrow q=3^2+2=11$ (thỏa mãn)
Nếu $r$ không chia hết cho $3$ thì $r^2$ chia $3$ dư $1$
$\Rightarrow q=r^2+2$ chia hết cho $3$
$\Rightarrow q=3$
$\Rightarrow r=1$ (vô lý- loại)
Vậy $(p,q,r)=(2,11,3), (11,2,3)$
- Vì p > q > r nên : p^2 + q^2 > 2
Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .
=> p^2 ; q^2 ; r^2 là các số lẻ
=> p ; q ; r là các số nguyên tố lẻ
- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)
=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )
= > q = 5 , r = 7
giải
- Vì p > q > r nên : p^2 + q^2 > 2
Do vậy p^2 + q^2 + r^2 là số nguyên tố thì p^2 + q^2 + r^2 phải là số lẻ .
=> p^2 ; q^2 ; r^2 là các số lẻ
=> p ; q ; r là các số nguyên tố lẻ
- Trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3 vì nếu không có số nào chia hết cho 3 thì p^2 , q^2 , r^2 chia 3 đều dư 1, khi đó p^2 + q^2 + r^2 chia hết cho 3 ( mâu thuẫn)
=> p = 3 ( p là số ngyen tố lẻ nhỏ nhất trong 3 số )
= > q = 5 , r = 7