K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2019

1. 

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)

<=> \(pq\left(x+y\right)=xy\)

Đặt: \(x=ta;y=tb\) với (a; b)=1

Ta có: \(pq.\left(a+b\right)=tab\)

<=> \(pq=\frac{t}{a+b}.ab\left(1\right)\)

 vì (a; b) =1 => a, b, a+b đôi một nguyên tố cùng nhau. (2)

(1); (2) => \(t⋮a+b\)

=> \(pq⋮ab\Rightarrow pq⋮a\)vì p; q là hai số nguyên tố nên \(a\in\left\{1;p;q;pq\right\}\)

 TH1: a=1 => \(pq⋮b\Rightarrow b\in\left\{1;p;q;pq\right\}\)

+) Khả năng 1: b=1 

(1) => \(t=2pq\)=> \(x=y=2pq\)( thỏa mãn)

+) Khả năng 2:  b=p

(1) => \(pq=\frac{t}{1+p}.p\Leftrightarrow t=\left(1+p\right)q=q+pq\)

=> \(x=at=q+pq;\)

\(y=at=pq+p^2q\)(tm)

+) Khả năng 3: b=q 

tương tự như trên

(1) => \(t=p\left(1+q\right)=p+pq\)

=> \(x=at=p+pq\)

\(y=bt=q\left(p+pq\right)=pq+pq^2\)

+) Khả năng 4: \(b=pq\)

(1) =>\(t=1+pq\)

=> \(x=1+pq;y=pq\left(1+pq\right)=1+p^2q^2\) 

 TH2\(a=p\)

=> \(q⋮b\Rightarrow\orbr{\begin{cases}b=1\\b=q\end{cases}}\)

+) KN1: \(b=1\)

Em làm tiếp nhé! Khá là dài

7 tháng 9 2019

2. \(x^4+4=p.y^4\)

+) Với x chẵn 

Đặt x=2m ( m thuộc Z)

=> \(16m^2+4=py^4\)

=> \(py^4⋮4\Rightarrow y^4⋮4\Rightarrow y^2⋮2\Rightarrow y⋮2\)=> Đặt y=2n ;n thuộc Z

Khi đó ta có:

\(16m^2+4=p.16n^2\Leftrightarrow4m^2+1=p.4n^2⋮4\)=> \(1⋮4\)( vô lí)

=> X chẵn loại

+) Với x lẻ

pt <=> \(x^4+4=py^4\)

<=> \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)=py^4\)(i)

Gọi  \(\left(x^2+2x+2;x^2-2x+2\right)=d\)(1)

=> \(x^2+2x+2⋮d\)

    \(x^2-2x+2⋮d\)

=.> \(\left(x^2+2x+2\right)-\left(x^2-2x+2\right)=4x⋮d\)

Vì x lẻ => d lẻ 

=> \(x⋮d\)

=> \(2⋮d\Rightarrow d=1\)

Do đó: \(\left(2x^2+2x+2;2x^2-2x+2\right)=1\)(ii)

Từ (i) và (ii) có thể đặt: với \(ab=y^2\)sao cho:

 \(x^2+2x+2=pa^2;\)

\(x^2-2x+2=b^2\)<=> \(\left(x-1\right)^2+1=b^2\)\(\Leftrightarrow\left(x-1-b\right)\left(x-1+b\right)=-1\)

<=> x=b=1 hoặc x=1; b=-1

Với x=1 => a^2.p=5 => p=5  

AH
Akai Haruma
Giáo viên
30 tháng 4 2021

Lời giải:

$pq=2r^2+4\vdots 2$ nên trong 2 số $p,q$ phải có ít nhất 1 số chẵn.

Không mất tổng quát giả sử $p$ chẵn. Do $p$ nguyên tố nên $p=2$

Khi đó:

$2q-2r^2=4$

$q-r^2=2$

$q=r^2+2$

Nếu $r$ chia hết cho $3$ thì $r=3$

$\Rightarrow q=3^2+2=11$ (thỏa mãn)

Nếu $r$ không chia hết cho $3$ thì $r^2$ chia $3$ dư $1$

$\Rightarrow q=r^2+2$ chia hết cho $3$

$\Rightarrow q=3$

$\Rightarrow r=1$ (vô lý- loại)

Vậy $(p,q,r)=(2,11,3), (11,2,3)$