K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

a) \(4x^2+12x+10=\left(2x+3\right)^2+1\ge1\)

Dấu "="\(\Leftrightarrow x=-2\)

b) \(B=\left(3x-1\right)^2+4\ge4\)

Dấu "="\(\Leftrightarrow x=\frac{1}{3}\)

22 tháng 9 2019

a, \(A=4x^2+12x+10\)

       \(=\left(2x+1\right)^2+1\ge1\forall x\)

Dấu"=" xảy ra<=> \(\left(2x+1\right)^2=0\)

                     \(\Leftrightarrow x=\frac{-1}{2}\)

\(b,B=9x^2-6x+5\)

      \(=\left(3x-1\right)^2+4\ge4\forall x\)

Dấu"=" xảy ra<=> \(\left(3x-1\right)^2=0\)

                   \(\Leftrightarrow x=\frac{1}{3}\)

30 tháng 9 2019

Ta có:

a) A = x2 + 6x + 10 = (x2 + 6x + 9) + 1 = (x + 3)2 + 1 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3

Vậy MinA = 1 <=> x = -3

b) B = 4x2 - 12x + 13 = 4(x2 - 3x + 9/4) + 4 = 4(x - 3/2)2 + 4 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy MinB = 4 <=> x = 3/2

16 tháng 9 2020

a) A = x2 + 12x + 39

= ( x2 + 12x + 36 ) + 3

= ( x + 6 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6

=> MinA = 3 ⇔ x = -6

B = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3

=> MinB = -4 ⇔ x = 2/3

b) C = 4x - x2 + 1

= -( x2 - 4x + 4 ) + 5

= -( x - 2 )2 + 5 ≤ 5 ∀ x

Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2

=> MaxC = 5 ⇔ x = 2

D = -4x2 + 4x - 3

= -( 4x2 - 4x + 1 ) - 2

= -( 2x - 1 )2 - 2 ≤ -2 ∀ x

Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2

=> MaxD = -2 ⇔ x = 1/2

16 tháng 9 2020

Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3

Dấu "=" xảy ra <=> x + 6 = 0

=> x = -6

Vậy Min A = 3 <=> x = -6

Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4

Dấu "=" xảy ra <=> 3x - 2 =0

=> x = 2/3

Vậy Min B = -4 <=> x = 2/3

b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Max C = 5 <=> x = 2

Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2

Dấu "=" xảy ra <=> 2x - 1 = 0

=> x = 0,5

Vậy Max D = -2 <=> x = 0,5

20 tháng 7 2021

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

7 tháng 9 2018

\(a,M=x^2+4x+5\)

\(M=x^2+2.x.2+2^2+1\)

\(M=\left(x+2\right)^2+1\ge1\)

Dấu "=" xảy ra khi x = -2

Vậy Min M = 1 <=> x = -2

b, Đặt \(A=9x^2-6x+6\)

\(A=\left(3x\right)^2-2.3x+1+5\)

\(A=\left(3x-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x = 1/3

Vậy Min A = 5 <=> x = 1/3

7 tháng 9 2018

a) M = x2 + 4x  + 5 

        = x2 + 4x + 4 + 1

        = ( x + 2 )2 + 1

Nhận xét :

( x + 2 )2 > 0 với mọi x

=>  ( x + 2 )2 + 1  > 1

=> M > 1

Dấu " = " xảy ra khi : ( x + 2 )2 = 0

                                => x + 2 = 0

                                 => x = - 2

Vậy giá trị nhỏ nhất của M = 1 khi x = - 2

b) N =  9x2 - 6x + 6

=  9x2 - 6x + 1 + 5 

= ( 3x + 1 )2 + 5

Nhận xét :

( 3x + 1 )2 > 0 với mọi x

=>  ( 3x + 1 )2 + 5 > 5

=> N > 5 

Dấu " = " xảy ra khi : ( 3x + 1 )2 = 0

                               => 3x + 1 = 0

                                => x = \(-\frac{1}{3}\)

Vậy giá trị nhỏ nhất của N = 5 khi x = \(-\frac{1}{3}\) 

4 tháng 7 2018

1/ 

a, đề sai ko

b, \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\left(đpcm\right)\)

2/

a,\(A=4x^2+12x+15=\left(4x^2+12x+9\right)+6=\left(2x+3\right)^2+6\)

Vì \(\left(2x+3\right)^2\ge0\Rightarrow A=\left(2x+3\right)^2+6\ge6\)

Dấu "=" xảy ra khi 2x+3=0 <=> x=-3/2

Vậy Amin = 6 khi x=-3/2

b, \(B=x^2-4x+2=\left(x^2-4x+4\right)-2=\left(x-2\right)^2-2\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2-2\ge-2\)

Dấu "=" xảy ra khi x=2

Vậy Bmin=-2 khi x=2

6 tháng 5 2023

`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`

`b)` Với `x ne -1;x ne -5` có:

`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`

`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`

`A=[x^2-3x-4]/[(x+1)(x+5)]`

`A=[(x+1)(x-4)]/[(x+1)(x+5)]`

`A=[x-4]/[x+5]`

`c)` Với `x ne -5; x ne -1; x ne 4` có:

`P=A.B=[x-4]/[x+5].[-10]/[x-4]`

           `=[-10]/[x+5]`

Để `P` nguyên `<=>[-10]/[x+5] in ZZ`

    `=>x+5 in Ư_{-10}`

Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`

`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

Bài 1: 

\(\left\{{}\begin{matrix}a=5c+1\\b=5d+2\end{matrix}\right.\)

\(a^2+b^2=\left(5c+1\right)^2+\left(5d+2\right)^2\)

\(=25c^2+10c+1+25d^2+20d+4\)

\(=25c^2+25d^2+10c+20d+5\)

\(=5\left(5c^2+5d^2+2c+4d+1\right)⋮5\)

Bài 3: 

a: \(4x^2+12x+15=4x^2+12x+9+6=\left(2x+3\right)^2+6>=6\forall x\)

Dấu '=' xảy ra khi x=-3/2

b: \(9x^2-6x+5=9x^2-6x+1+4=\left(3x-1\right)^2+4>=4\forall x\)

Dấu '=' xảy ra khi x=1/3