Cho biết sô phần tử của tập hợp sau :
\(F=\left\{n\inℕ/2n=1\right\}\)
\(G=\left\{\times|\times=2n;n\inℕ\right\}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
0<x<171
nên 0<3n^2-2n+1<342
=>3n^2-2n+1<342
=>3n^2-2n-341<0
=>\(-\dfrac{31}{3}< n< 11\)
mà n là số nguyên dương
nên \(n\in\left\{1;2;...;9;10\right\}\)
Ta có: \(1-\frac{4}{1}=-3=-\frac{2.1+1}{2.1-1}\)
\(-3.\left(1-\frac{4}{9}\right)=-3.\frac{5}{9}=-\frac{5}{3}=-\frac{2.2+1}{2.2-1}\)
\(-\frac{5}{3}.\left(1-\frac{1}{25}\right)=-\frac{5}{3}.\frac{21}{25}=-\frac{7}{5}=-\frac{2.3+1}{2.3-1}\)
.................................................................................
Vậy kết quả cuối cùng của biểu thức là: \(-\frac{2n+1}{2n-1}\)
Thầy tui cho cái ghi nhớ thế này \(\lim\limits\left(u_n-a\right)=0\Leftrightarrow\lim\limits u_n=a\) . Cơ mà theo tui cứ nên biến đổi từ từ đã :v
\(\lim\limits\left(\dfrac{1-4an+4a^2n^2-8an^2+4an-2a-16n^2+8n-4}{4n^2-2n+1}\right)\)
\(=\lim\limits\dfrac{4a^2n^2-8n^2\left(a+2\right)-2a+8n-3}{4n^2-2n+1}=\lim\limits\dfrac{4a^2-8\left(a+2\right)}{4}=0\Leftrightarrow a^2-2a-4=0\Leftrightarrow\left[{}\begin{matrix}a=1+\sqrt{5}\\a=1-\sqrt{5}\end{matrix}\right.\Rightarrow tong-S=2\)
F có 0 phần tử vì n=0,5 không thuộc N
G có vô số phần tử vì G là tập hợp của mọi số chẵn