K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

Ta có: \(1-\frac{4}{1}=-3=-\frac{2.1+1}{2.1-1}\)

          \(-3.\left(1-\frac{4}{9}\right)=-3.\frac{5}{9}=-\frac{5}{3}=-\frac{2.2+1}{2.2-1}\) 

        \(-\frac{5}{3}.\left(1-\frac{1}{25}\right)=-\frac{5}{3}.\frac{21}{25}=-\frac{7}{5}=-\frac{2.3+1}{2.3-1}\)

                     .................................................................................

         Vậy kết quả cuối cùng của biểu thức là: \(-\frac{2n+1}{2n-1}\)

7 tháng 7 2019

Cảm ơn bạn Trần Đình Tuệ

11 tháng 12 2016

nhanh lên nhé

11 tháng 12 2016

(1+\(\frac{1}{3}\)) x (1+\(\frac{1}{2x4}\)) x(1+\(\frac{1}{3x5}\))x(1+\(\frac{1}{4x6}\)) x .....x (1+ \(\frac{1}{2009x2011}\))

\(\frac{2}{1x3}\)\(\frac{2}{2x4}\)\(\frac{2}{3x5}\)\(\frac{2}{4x6}\)x....x \(\frac{2}{2009x2011}\)

= ..................

đến đây tự làm nhé

25 tháng 8 2020

\(4.\left(\frac{1}{4}\right)^2+25\left[\left(\frac{3}{4}\right)^3:\left(\frac{5}{4}\right)^3\right]:\left(\frac{3}{2}\right)^3=4.\frac{1}{16}+25\left(\frac{27}{64}.\frac{64}{125}\right).\frac{8}{27}\)

\(=\frac{1}{4}+25.\frac{27}{125}.\frac{8}{27}=\frac{1}{4}+\frac{8}{5}=\frac{37}{20}\)

\(2^3+3\left(\frac{1}{2}\right)^0-1+\left[\left(-2\right)^2:\frac{1}{2}\right]-8=8+3-1+4.2-8=10\)

17 tháng 8 2018

\(=\frac{11}{-5}\cdot\frac{-9}{11}\cdot\frac{15}{-14}\cdot\frac{2}{5}+-\frac{2}{77}\cdot\frac{5}{-3}\)
\(=\frac{9}{5}\cdot-\frac{15}{14}\cdot\frac{2}{5}+\frac{10}{231}\)
\(=-\frac{841}{1155}\)

28 tháng 8 2019

Dễ thấy 6,3 . 12 - 21 . 3,6 = 63 . 1,2 - 63 . 1,2 = 0

Do đó biểu thức trên bằng 0

16 tháng 10 2017

Mình đang cần gắp 

16 tháng 10 2017

bạn còn

4 tháng 3 2018

\(A=\frac{1}{2}\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)...\left(1+\frac{1}{2015\cdot2017}\right)\)\(A=\frac{1}{2}\left(\frac{1\cdot3+1}{1\cdot3}\right)\left(\frac{2\cdot4+1}{2\cdot4}\right)...\left(\frac{2015\cdot2017+1}{2015\cdot2017}\right)\)

\(A=\frac{1^2}{2}\cdot\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\cdot\cdot\frac{2016^2}{2015\cdot2017}\)

\(A=\frac{1^2\cdot2^2\cdot3^2\cdot\cdot\cdot2016^2}{2\cdot1\cdot3\cdot2\cdot4\cdot\cdot\cdot2015\cdot2017}\)

\(A=\frac{2016}{2017}\)