K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 11 2021

\(37xy=x^2+y^2+5x^2y^2+60\ge2xy+5x^2y^2+60\)

\(\Rightarrow5x^2y^2-35xy+60\le0\)

\(\Rightarrow5\left(xy-3\right)\left(xy-4\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}xy=3\\xy=4\end{matrix}\right.\) 

Thế vào pt đầu \(\Rightarrow...\)

15 tháng 11 2021

\(5\left(xy-3\right)\left(xy-4\right)\le0\) sao suy ra \(\left[{}\begin{matrix}xy=3\\xy=4\end{matrix}\right.\) đc

28 tháng 5 2018

\(PT\Leftrightarrow x^2-2xy+y^2=35xy-5x^2y^2-60\)

\(\Leftrightarrow\left(x-y\right)^2=5\left(3-xy\right)\left(xy-4\right)\)

Mà \(\left(x-y\right)^2\ge0\forall x;y\) nên \(5\left(3-xy\right)\left(xy-4\right)\ge0\Leftrightarrow3\le xy\le4\) 

\(\Rightarrow\hept{\begin{cases}x;y\in\left\{3;4\right\}\\x=y\end{cases}}\) \(\Rightarrow\left(x;y\right)\in\left\{\left(2;2\right);\left(-2;-2\right)\right\}\)

28 tháng 5 2018

Vi ét à bạn?

29 tháng 9 2016

Ta có 

PT <=> (1 + 5y2)x2 - 37yx + y2 + 60 = 0

Xét pt theo ẩn x ta có để pt có nghiệm thì 

\(\ge0\)

<=> (37y)2 - 4(1 + 5y2)(y2 + 60) \(\ge0\)

<=> - 20y4 + 165y2 - 240\(\ge0\)

<=> 1 < y2 < 7

=> y2 = 4

=> y = (2;-2)

=> x =  (2;-2)

14 tháng 10 2016

ai giải giúp mình với,minh se k nguoi do

14 tháng 10 2016

xem như pt bậc 2 ẩn x 
x^2 + y^2 + 5(xy)^2 + 60 =37xy 
<>(1+5y^2).x^2 -37xy + 60 + y^2 =0 
denta = 37^2*y^2 - 4*(60+y^2)*(1+5y^2) 
= -20y^4+165y^2- 240 >=0 
=> 1 < y^2 <7 => y= +-2 
với y= 2 => x = 2 thỏa mãn 
với y =-2 => x =- 2 thỏa mãn

xong nha

4 tháng 4 2018

Trả lời

Xem như phương trình bậc 2 ẩn x

\(x^2+y^2+5\left(xy\right)^2+60=37xy\)

\(\Leftrightarrow\left(1+5y^2\right)\cdot x^2-37xy+60+y^2=0\)

Denta=\(37^2\cdot y^2-4\cdot\left(60+y^2\right)\cdot\left(1+5y^2\right)\)

\(=-20y^4+165y^2-240=0\)

\(\Rightarrow1< y^2< \pm2\)

Với \(y=2\Rightarrow x=2\)(thỏa mãn)

Với \(y=-2\Rightarrow x=-2\)(thỏa mãn)

Vậy....

7 tháng 4 2018

mk ko hieu doan denta =...

NV
17 tháng 4 2019

\(4\left(x^2-2xy+y^2\right)+5\left(4x^2y^2-28xy+49\right)=5\)

\(\Leftrightarrow4\left(x-y\right)^2+5\left(2xy-7\right)^2=5\)

- Nếu \(2xy-7\ne0\Rightarrow\left(2xy-7\right)^2>1\Rightarrow5\left(2xy-7\right)^2>5\)

\(\Rightarrow4\left(x-y\right)^2< 0\) (vô lý)

Vậy \(2xy-7=0\)

Mà do x, y nguyên nên \(2xy\) chẵn \(\Rightarrow2xy-7\ne0\) \(\forall x;y\in Z\)

Vậy pt ko có nghiệm nguyên