Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow x^2-2xy+y^2=35xy-5x^2y^2-60\)
\(\Leftrightarrow\left(x-y\right)^2=5\left(3-xy\right)\left(xy-4\right)\)
Mà \(\left(x-y\right)^2\ge0\forall x;y\) nên \(5\left(3-xy\right)\left(xy-4\right)\ge0\Leftrightarrow3\le xy\le4\)
\(\Rightarrow\hept{\begin{cases}x;y\in\left\{3;4\right\}\\x=y\end{cases}}\) \(\Rightarrow\left(x;y\right)\in\left\{\left(2;2\right);\left(-2;-2\right)\right\}\)
Ta có
PT <=> (1 + 5y2)x2 - 37yx + y2 + 60 = 0
Xét pt theo ẩn x ta có để pt có nghiệm thì
∆\(\ge0\)
<=> (37y)2 - 4(1 + 5y2)(y2 + 60) \(\ge0\)
<=> - 20y4 + 165y2 - 240\(\ge0\)
<=> 1 < y2 < 7
=> y2 = 4
=> y = (2;-2)
=> x = (2;-2)
\(37xy=x^2+y^2+5x^2y^2+60\ge2xy+5x^2y^2+60\)
\(\Rightarrow5x^2y^2-35xy+60\le0\)
\(\Rightarrow5\left(xy-3\right)\left(xy-4\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}xy=3\\xy=4\end{matrix}\right.\)
Thế vào pt đầu \(\Rightarrow...\)
\(5x^2+2\left(3y+1\right)x+2y^2+2y-73=0\) (1)
\(\Delta'=\left(3y+1\right)^2-5\left(2y^2+2y-73\right)=-y^2-4y+366\)
\(\Delta'\) là số chính phương \(\Rightarrow-y^2-4y+366=k^2\)
\(\Leftrightarrow\left(y+2\right)^2+k^2=370=3^2+19^2=9^2+17^2\)
\(\Rightarrow\left[{}\begin{matrix}y+2=3\\y+2=19\\y+2=9\\y+2=17\end{matrix}\right.\) thế vào (1) tìm x nguyên dương
\(3x^2+y^2+4xy=5x+2y+1\)
\(\Leftrightarrow3x^2+x\left(4y-5\right)+\left(y^2-2y-1\right)=0\left(1\right)\)
Coi phương trình (1) là phương trình ẩn x tham số y, ta có:
\(\Delta=\left(4y-5\right)^2-3.4.\left(y^2-2y-1\right)\)
\(=16y^2-40y+25-12y^2+24y+12\)
\(=4y^2-16y+37\)
Để phương trình (1) có nghiệm nguyên thì \(\Delta\) phải là số chính phương hay \(\Delta=4y^2-16y+37=a^2\) (a là số tự nhiên).
\(\Rightarrow4y^2-16y+16+21=a^2\)
\(\Rightarrow a^2-\left(2y-4\right)^2=21\)
\(\Rightarrow\left(a-2y+4\right)\left(a+2y-4\right)=21\)
\(\Rightarrow a-2y+4;a+2y-4\) là các ước số của 21.
Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:
a-2y+4 | 1 | 3 |
a+2y-4 | 21 | 7 |
a | 11 | 5 |
y | 7 | 3 |
Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:
a-2y+4 | 21 | 7 |
a+2y-4 | 1 | 3 |
a | 11 | 5 |
y | -3(loại vì y>0) | 1 |
Với a=11, y=7. Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.7-5\right)+\sqrt{11^2}}{6}=-2\) (loại vì x>0)
\(x_2=\dfrac{-\left(4.7-5\right)-\sqrt{11^2}}{6}=-\dfrac{17}{3}\left(loại\right)\)
Với \(a=5;y=3\). Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.3-5\right)+\sqrt{5^2}}{6}=-\dfrac{1}{3}\left(loại\right)\)
\(x_2=\dfrac{-\left(4.3-5\right)-\sqrt{5^2}}{6}=-2\) (loại vì x>0)
Với \(a=5;y=1\). Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.1-5\right)+\sqrt{5^2}}{6}=1\)
\(x_2=\dfrac{-\left(4.1-5\right)-\sqrt{5^2}}{6}=-\dfrac{2}{3}\left(loại\right)\)
Vậy x,y nguyên dương thỏa mãn phương trình trên là \(x=y=1\)
cho mình hỏi sao để nó có nghiệm nguyên khi nó là số chính phương thế bạn
5x2 + y2 + 2xy - 6x - 2y - 3 = 0
<=> (x2 + 2xy + y2) - 2(x + y) + 1 + (4x2 - 4x + 1) = 5
<=> (x + y - 1)2 + (2x - 1)2 = 5 = 12 + 22
Do x;y nguyên và 2x - 1 lẻ => 2x - 1 \(\in\){1; -1}
Lập bảng:
x + y - 1 | 2 | 2 | -2 | -2 |
2x - 1 | 1 | -1 | 1 | -1 |
x | ||||
y |
(tự tính)