Không dùng máy tính hãy tính:
A= \(Sin^25^o+Sin^225^o+Sin^245^o+Sin^265^o+Sin^285^o\)
B=\(tan1^o.tan2^o.tan3^o.......tan88^o.tan89^o\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\sin^25^0+\sin^225^0+\sin^245^0+\sin^265^0+\sin^285^0\)
\(=\left(\sin^25^0+\sin^285^0\right)+\left(\sin^225^0+\sin^265^0\right)+\dfrac{1}{2}\)
\(=2+\dfrac{1}{2}=\dfrac{5}{2}\)
\(\Rightarrow A=\left(sin^25^0+sin^285^0\right)+\left(sin^225^0+sin^265^0\right)+sin^245^0=\left(sin^25^0+cos^25^0\right)+\left(sin^225^0+cos^225^0\right)+\dfrac{1}{2}=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)
4. \(D=sin^21^o+sin^22^o+sin^23^o+...+sin^287^o+sin^288^o+sin^289^o=\left(sin^21^o+sin^289^o\right)+\left(sin^22^o+sin^288^o\right)+...+\left(sin^244^o+sin^246^o\right)+sin^245^o=1+1+1+...+1+1+0,5=44,5\)
\(5.E=cos^21^o+cos^22^o+cos^23^o+...+cos^287^o+cos^288^o+cos^289^o=\left(cos^21^o+cos^289^o\right)+\left(cos^22^o+cos^288^o\right)+...+\left(cos^244^o+cos^246^o\right)+cos^245^o=1+1+1+...+1+0,5=1.44+0,5=44,5\)
sina=cos(90-a) thay vào ta được
sin215+sin225+sin235+cos235+cos225+cos215=3
tương tự câu dưới ta được =3/2
`sin^2 25^o + sin^2 65^o`
`=cos^2 65^o + sin^2 65^o`
=1`
__________________________________________
`***` Áp dụng công thức lượng giác: `sin^2 \alpha +cos^2 \alpha =1`
\(ADCT:\sin^2\alpha+\cos^2\alpha=1\)
\(A=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin45^0\)
\(A=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\frac{\sqrt{2}}{2}\)
\(A=1+1+1+\frac{\sqrt{2}}{2}=\frac{6+\sqrt{2}}{2}\)
Câu b lm tương tự
\(A=\left(\sin^25^0+\sin^285^0\right)+\left(\sin^225^0+\sin65^0\right)+\sin^245^0\)
\(=\left(\sin^25^0+\cos^25^0\right)+\left(\sin^225^0+\cos^225^0\right)+\frac{1}{2}\)
\(=1+1+\frac{1}{2}\)
\(=\frac{5}{2}\)
\(B=\left(\tan1^0.\tan89^0\right).\left(\tan2^0.\tan88^0\right).\left(\tan3^0.\tan87^0\right)...\tan45^0=\left(\tan1^0.\cot1^0\right).\left(\tan2^0.\cot2^0\right).\left(\tan3^0.\cot3^0\right)...1=1\)