K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

\(A=\left(\sin^25^0+\sin^285^0\right)+\left(\sin^225^0+\sin65^0\right)+\sin^245^0\)

\(=\left(\sin^25^0+\cos^25^0\right)+\left(\sin^225^0+\cos^225^0\right)+\frac{1}{2}\)

\(=1+1+\frac{1}{2}\)

\(=\frac{5}{2}\)

11 tháng 9 2019

\(B=\left(\tan1^0.\tan89^0\right).\left(\tan2^0.\tan88^0\right).\left(\tan3^0.\tan87^0\right)...\tan45^0=\left(\tan1^0.\cot1^0\right).\left(\tan2^0.\cot2^0\right).\left(\tan3^0.\cot3^0\right)...1=1\)

Ta có: \(A=\sin^25^0+\sin^225^0+\sin^245^0+\sin^265^0+\sin^285^0\)

\(=\left(\sin^25^0+\sin^285^0\right)+\left(\sin^225^0+\sin^265^0\right)+\dfrac{1}{2}\)

\(=2+\dfrac{1}{2}=\dfrac{5}{2}\)

28 tháng 6 2021

\(\Rightarrow A=\left(sin^25^0+sin^285^0\right)+\left(sin^225^0+sin^265^0\right)+sin^245^0=\left(sin^25^0+cos^25^0\right)+\left(sin^225^0+cos^225^0\right)+\dfrac{1}{2}=1+1+\dfrac{1}{2}=\dfrac{5}{2}\)

3 tháng 8 2018

4. \(D=sin^21^o+sin^22^o+sin^23^o+...+sin^287^o+sin^288^o+sin^289^o=\left(sin^21^o+sin^289^o\right)+\left(sin^22^o+sin^288^o\right)+...+\left(sin^244^o+sin^246^o\right)+sin^245^o=1+1+1+...+1+1+0,5=44,5\)

3 tháng 8 2018

\(5.E=cos^21^o+cos^22^o+cos^23^o+...+cos^287^o+cos^288^o+cos^289^o=\left(cos^21^o+cos^289^o\right)+\left(cos^22^o+cos^288^o\right)+...+\left(cos^244^o+cos^246^o\right)+cos^245^o=1+1+1+...+1+0,5=1.44+0,5=44,5\)

14 tháng 10 2021

b: \(\cos30^0=\dfrac{\sqrt{3}}{2}\)

9 tháng 9 2018

k mk đi

ai k mk

mk k lại

thanks

9 tháng 9 2018

deo tra loi thoi m vo chat linh tinh ak

24 tháng 8 2019

bài 2 là tính tan C nhá

mik vt nhầm

30 tháng 9 2019

sina=cos(90-a) thay vào ta được

sin215+sin225+sin235+cos235+cos225+cos215=3

tương tự câu dưới ta được =3/2

29 tháng 5 2022

`sin^2 25^o + sin^2 65^o`

`=cos^2 65^o + sin^2 65^o`

=1`

__________________________________________

`***` Áp dụng công thức lượng giác: `sin^2 \alpha +cos^2 \alpha =1`

29 tháng 5 2022

Đề cs sai 0 nhỉ phải là `sin^2 25^o + sin^2 65^o`

 Hoặc `sin^2 35^o + sin^2 55^o` chứ

29 tháng 6 2019

\(ADCT:\sin^2\alpha+\cos^2\alpha=1\)

\(A=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin45^0\)

\(A=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\frac{\sqrt{2}}{2}\)

\(A=1+1+1+\frac{\sqrt{2}}{2}=\frac{6+\sqrt{2}}{2}\)

Câu b lm tương tự