K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|x+1,5\right|\ge0\forall x\)

Dấu " = " xảy ra khi 

| x + 1,5 | = 0

x = -1,5 

Vậy Min = 0 <=> x = -1,5

b) 

\(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|-\frac{9}{10}\ge\frac{9}{10}\forall x\)

Dấu " = " xảy ra khi 

| x - 2 | = 0 

x = 2 

Vậy MinA = \(\frac{9}{10}\)<=> x = 2

\(-\left|2x-1\right|\le0\forall x\)

Dấu " = " xảy ra khi :

- | 2x - 1 | = 0

=> x = \(\frac{1}{2}\)

Vậy MaxA = 0 <=> x = \(\frac{1}{2}\)

b) 

\(-\left|5x-3\right|\le0\forall x\Rightarrow4-\left|5x-3\right|\le4\)

Dấu " = " xảy ra khi :

- | 5x - 3 | = 0

=> x = \(\frac{3}{5}\)

Vậy Max = 4 <=> x = \(\frac{3}{5}\)

Study well 

20 tháng 3 2022

a, Có \(\left(x^2-9\right)^2\)≥0   ∀ x ∈ Z

           |y-2| ≥0   ∀ y ∈ Z

⇒ Gía trị nhỏ nhất A=-1. Dấu ''='' xảy ra khi:\(\left(x^2-9\right)^2\)+|y-2|=0

                                                                 ⇒   \(x=3\) ;  \(y=2\)

Vậy.....

b, Có \(x^4\) ≥ 0 ∀ x ∈ Z

         3\(x^2\) ≥ 0 ∀ x ∈ Z

 ⇒ Giá trị nhỏ nhất của B=2. Dấu ''='' xảy ra khi: \(x^4\)+3\(x^2\)=0

                                                                         ⇒  \(x^2\left(x^2+3\right)\)=0

                                                                         ⇒  \(x^2\)             =0

                                                                         ⇒   \(x=0\)

Vậy...

14 tháng 4 2022

help

:")))

15 tháng 4 2022

a) \(x>3\Leftrightarrow\left|x-3\right|=x-3\)

\(x< 3\Leftrightarrow\left|x-3\right|=3-x\)

b) \(x>0\Leftrightarrow\left|-2x\right|=2x\)

\(x< 0\Leftrightarrow\left|-2x\right|=-2x\)

15 tháng 9 2016

T/C của gttđ là >= 0 nên 

a) GTNN = -4

b) GTLN = 2

c) GTNN = 2

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

c) Ta có: \(\left|5x-2\right|\ge0\forall x\)

\(\left|3y+12\right|\ge0\forall y\)

Do đó: \(\left|5x-2\right|+\left|3y+12\right|\ge0\forall x,y\)

\(\Leftrightarrow-\left|5x-2\right|-\left|3y+12\right|\le0\forall x,y\)

\(\Leftrightarrow-\left|5x-2\right|-\left|3y+12\right|+4\le4\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}5x-2=0\\3y+12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\3y=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)

28 tháng 7 2021

bạn làm bài nào đây ạ? 4 - |5x-2| - |3y + 12| mà đâu phải −|5x−2|−|3y+12|+4

NV
30 tháng 6 2021

Với các số thực không âm a; b ta luôn có BĐT sau:

\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)

Áp dụng:

a. 

\(A\ge\sqrt{x-4+5-x}=1\)

\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)

\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)

b.

\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)

\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)

\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)

\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)

30 tháng 6 2021

a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)

        =>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)

        =>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)

        =>A\(\ge\)1

Dấu '=' xảy ra <=> x=4 hoặc x=5

Vậy,Min A=1 <=>x=4 hoặc x=5

Còn câu b tương tự nhé