K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left|x+1,5\right|\ge0\forall x\)

Dấu " = " xảy ra khi 

| x + 1,5 | = 0

x = -1,5 

Vậy Min = 0 <=> x = -1,5

b) 

\(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|-\frac{9}{10}\ge\frac{9}{10}\forall x\)

Dấu " = " xảy ra khi 

| x - 2 | = 0 

x = 2 

Vậy MinA = \(\frac{9}{10}\)<=> x = 2

\(-\left|2x-1\right|\le0\forall x\)

Dấu " = " xảy ra khi :

- | 2x - 1 | = 0

=> x = \(\frac{1}{2}\)

Vậy MaxA = 0 <=> x = \(\frac{1}{2}\)

b) 

\(-\left|5x-3\right|\le0\forall x\Rightarrow4-\left|5x-3\right|\le4\)

Dấu " = " xảy ra khi :

- | 5x - 3 | = 0

=> x = \(\frac{3}{5}\)

Vậy Max = 4 <=> x = \(\frac{3}{5}\)

Study well 

20 tháng 3 2022

a, Có \(\left(x^2-9\right)^2\)≥0   ∀ x ∈ Z

           |y-2| ≥0   ∀ y ∈ Z

⇒ Gía trị nhỏ nhất A=-1. Dấu ''='' xảy ra khi:\(\left(x^2-9\right)^2\)+|y-2|=0

                                                                 ⇒   \(x=3\) ;  \(y=2\)

Vậy.....

b, Có \(x^4\) ≥ 0 ∀ x ∈ Z

         3\(x^2\) ≥ 0 ∀ x ∈ Z

 ⇒ Giá trị nhỏ nhất của B=2. Dấu ''='' xảy ra khi: \(x^4\)+3\(x^2\)=0

                                                                         ⇒  \(x^2\left(x^2+3\right)\)=0

                                                                         ⇒  \(x^2\)             =0

                                                                         ⇒   \(x=0\)

Vậy...

15 tháng 9 2016

T/C của gttđ là >= 0 nên 

a) GTNN = -4

b) GTLN = 2

c) GTNN = 2

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

c) Ta có: \(\left|5x-2\right|\ge0\forall x\)

\(\left|3y+12\right|\ge0\forall y\)

Do đó: \(\left|5x-2\right|+\left|3y+12\right|\ge0\forall x,y\)

\(\Leftrightarrow-\left|5x-2\right|-\left|3y+12\right|\le0\forall x,y\)

\(\Leftrightarrow-\left|5x-2\right|-\left|3y+12\right|+4\le4\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}5x-2=0\\3y+12=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=2\\3y=-12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)

28 tháng 7 2021

bạn làm bài nào đây ạ? 4 - |5x-2| - |3y + 12| mà đâu phải −|5x−2|−|3y+12|+4

13 tháng 3 2022

\(A=\left(x-1\right)^2+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ 1>0.\\ \Rightarrow\left(x-1\right)^2+1\ge1\forall x\in R.\\ \Rightarrow A\ge1.\\ \Rightarrow A_{min}=1.\)

\(B=x^2+x^4-\dfrac{1}{2}.\\ x^2+x^4\ge0\forall x\in R.\\ \Leftrightarrow x^2+x^4-\dfrac{1}{2}\ge\dfrac{-1}{2}\forall x\in R.\\ \Rightarrow B\ge\dfrac{-1}{2}.\\ \Rightarrow B_{min}=\dfrac{-1}{2}.\)

\(D=\dfrac{2}{\left(x-1\right)^2}+1.\\ \left(x-1\right)^2\ge0\forall x\in R.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}\ge0.\\ \Leftrightarrow\dfrac{2}{\left(x-1\right)^2}+1\ge1\forall x\in R.\\ \Rightarrow D\ge1.\\ \Rightarrow D_{min}=1.\)

15 tháng 3 2022

Mình cảm ơn

20 tháng 11 2021

a) \(A=2,7+\left|x-1,5\right|\ge2,7\)

\(minA=2,7\Leftrightarrow x=1,5\)

b) \(B=\left|4,1+x\right|-6,3\ge-6,3\)

\(minB=-6,3\Leftrightarrow x=-4,1\)

 

20 tháng 11 2021

a)

Ta có:

\(\left|x-1,5\right|\)≥0

=>\(2,7+\left|x-1,5\right|\)≥2,7

GTNN:A=2,7 khi  x-1,5=0

                                x=1,5

Ta có:

\(\left|4,1+x\right|\)≥0

=>\(\left|4,1+x\right|-6,3\)≥-6,3

GTNN:B=6,3 khi 4,1+x=0

                              x=-4,1

16 tháng 7 2021

Với mọi x ta có :

\(\left|x+5\right|\ge0\)

\(\Leftrightarrow\left|x+5\right|+5\ge0\)

\(\Leftrightarrow A\ge5\)

Dấu "=" xảy ra \(\Leftrightarrow x=-5\)

Vậy..