Tìm GTNN của A = \(|\frac{4}{3}-2x|-2019\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=|2x-2019|+|2x-3|
A=|2x-2019|+|3-2x| (Vì |A|=|-A| nha bạn)
A lớn hơn hoặc =|2x-2019+3-2x|
=2016
Vậy GTNN A=2016
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
\(A=2.\left|x-\frac{1}{2}\right|-2019\)
Vì \(\left|x-\frac{1}{2}\right|\ge0,\forall x\)
\(\Rightarrow2.\left|x-\frac{1}{2}\right|\ge0,\forall x\)
\(\Rightarrow2.\left|x-\frac{1}{2}\right|-2019\ge-2019,\forall x\)
Dấu \("="\)xảy ra
\(\Leftrightarrow\left|x-\frac{1}{2}\right|=0\)
\(x-\frac{1}{2}=0\)
\(x=0+\frac{1}{2}\)
\(x=\frac{1}{2}\)
Vậy \(A_{min}=-2019\Leftrightarrow x=\frac{1}{2}\)
\(A=2.\left|x-\frac{1}{2}\right|-2019\)
Ta có : \(2.\left|x-\frac{1}{2}\right|\ge0\forall x\)
\(\Rightarrow2\left|x-\frac{1}{2}\right|-2019\ge-2019\)
Dấu "=" xảy ra \(\Leftrightarrow2.\left|x-\frac{1}{2}\right|=0\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy : \(A_{min}=-2019\) tại \(x=\frac{1}{2}\)
\(B=4\left|3x-2\right|+3\left|4x+1\right|-\frac{1}{3}\)
Ta có : \(4\left|3x-2\right|\ge0\forall x,3\left|4x+1\right|\ge0\forall x\)
\(\Rightarrow4\left|3x-2\right|+3\left|4x+1\right|\ge0\forall x\)
\(\Rightarrow4\left|3x-2\right|+3\left|4x+1\right|-\frac{1}{3}\ge-\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-2=0\\4x+1=0\end{cases}}\)
...
Vì|\(\frac{4}{3}\) -2x| \(\ge\) 0 nên |\(\frac{4}{3}\) -2x| - 2019 \(\le\) -2019
Vậy GTNN của A bằng -2019
Dấu bằng xảy ra khi:
|\(\frac{4}{3}\) -2x| = 0 => \(\frac{4}{3}\)-2x = 0
2x = \(\frac{4}{3}\) => x = \(\frac{2}{3}\)
Vậy GTNN của A bằng -2019 khi x = \(\frac{2}{3}\)