cho tam giác ABC cân tại A . trên hai tia AB và AC lần lượt lấy hai điểm M và N sao cho AM + AN = 2AB. chứng minh rằng trung điểm của MN nằm trên BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Xét tam giác ABC và ADE có :
góc EAD = góc CAB (đối đỉnh)
CA=EA (gt)
BA=DA (gt)
suy ra tam giác ABC=ADE (c.g.c)
suy ra :DE =BC ( 2 cạnh tương ứng ) ; góc E= góc C ; góc D = góc B (các góc tương ứng )
Mà M; N lần lượt là trung điểm của DE và BC suy ra EN=DN=BM=CM
Xét tam giác ENA và CMA có:
EN = CM ( cmt)
góc E = góc C (cmt)
AE = AC (gt)
suy ra tam giác EAN = CMA (c.g.c) suy ra AM =AN ( 2 cạnh tương ứng )
Xét tam giác NDA và MBA có:
góc D= góc B (cmt)
ND = MB (cmt )
DA = BA (cmt )
suy ra tam giác NDA = MBA (c.g.c)suy ra góc NAD = góc MAB
Ta có góc DAC +MAC+MAB = 180 độ ( vì D nằm trên tia đối của tia AB )
Mà góc NAD = góc MAB suy ra góc DAC+MAC+NAD =180 độ
suy ra 3 điểm M,A,N thẳng hàng (2)
Từ (1) và (2 ) suy ra A là trung điểm của MN
( mình vẽ hình hơi xấu , mong bạn thông cảm . Nếu đúng nhớ kết bạn với mình nhé , mong tin bạn ^-^)
Bài 3:
Xét ΔHMB vuông tại H và ΔKMC vuông tại K có
MB=MC
\(\widehat{HMB}=\widehat{KMC}\)
Do đo: ΔHMB=ΔKMC
Suy ra: BH=CK
Từ M kẻ đường song song với AN cắt BC tại K.Gọi I là giao điểm của MN với BC
Ta có: tam giác ABC cân tại Á nên góc B=góc C. Mà MK//AN => góc MKB =góc ABC => góc MKB=góc B=> MB=MK=CN
=> 180độ - góc MKB=180 độ - góc B=> góc MKI=góc ICN
MÀ góc KMN=góc INA (so le trong).
Vậy tam giác MKI bằng tam giác NIC(g.c.g)=>MI=NI(cạnh tương ứng)
=> I là trung điểm của MN
=>đpcm
Mình xét mỗi trường hợp như hình vẽ mà thôi, còn nếu điểm M nằm ngoài đoạn AB thì cũng tương tự nha
Vẽ MH,NK cùng vuông góc với BC
Ta dễ thấy MB=NC
Xét \(\Delta BMH\) và \(\Delta CNK\)có \(\widehat{BHM}=\widehat{CKN}=90;BM=CN\)\(;\widehat{MBH}=\widehat{NCK}\)(vì cùng bằng với\(\widehat{ACB}\))
\(\Rightarrow\Delta BMH=\Delta CNK\left(CH.GN\right)\Rightarrow MH=NK\)
Xét \(\Delta MHI\)và \(\Delta NKI\)có \(\widehat{HMI}=\widehat{KNI}\)(2 góc so le trong và HM song song với KN);
\(HM=KN;\widehat{MHI}=\widehat{NKI}=90\)
\(\Rightarrow\Delta MHI=\Delta NKI\left(G.C.G\right)\Rightarrow MI=NI\)
Vậy I là trung điểm MN mà I là giao điểm của MN và BC nên ta có điều phải chứng minh