K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

Suy ra: BH=CH

b: Ta có: BH=CH

nên \(BH=CH=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Xét ΔAHB vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay AH=12(cm)

\(\Leftrightarrow AG=8\left(cm\right)\)

c: Xét ΔABC có

N là trung điểm của AB

M là trung điểm của AC

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC

15 tháng 7 2019

Bài 1 : Hình tự vẽ

a ) Ta có : BM = AB ( theo đề bài )

=> Tam giác AMB cân tại B

b ) Do tam giác ABC vuông cân tại A => AB = AC 

                                                          mà  CN = AB => CN cũng = AC 

=> Tam giác ANC cân tại C

c ) Tam giác j cân tại A ???

Bài 2 : Hình bn tự vẽ nhé

a ) AH \(\perp\)BC => \(\Delta AHB\)và \(\Delta AHC\)là hai tam giác vuông

Do tam giác ABC cân tại A => AB = AC và \(\widehat{ABC}=\widehat{ACB}\)

Xét hai tam giác vuông :  \(\Delta AHB\)và \(\Delta AHC\)có :

AB = AC ( cmt )

\(\widehat{ABC}=\widehat{ACB}\)( cmt )

nên tam giác AHB = tam giác AHC ( cạnh huyền - góc nhọn )

b ) Do tam giác AHB = tam giác AHC => HB = HC ( hai cạnh tương ứng )

c ) Do tam giác AHB = tam giác AHC => \(\widehat{BAH}=\widehat{CAH}\)

=> AH là tia p/g của \(\widehat{BAC}\)

15 tháng 7 2019

thanks bạn nhìu

b: Ta có: \(\cot\widehat{B}+\cot\widehat{C}\)

\(=\dfrac{AC}{AB}+\dfrac{AB}{AC}\)

\(=\dfrac{AB^2+AC^2}{AB\cdot AC}\)

\(=\dfrac{BC^2}{AB\cdot AC}\)

\(=\dfrac{BC^2}{BC\cdot AH}=\dfrac{BC}{AH}\)