Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Ta có: \(\cot\widehat{B}+\cot\widehat{C}\)
\(=\dfrac{AC}{AB}+\dfrac{AB}{AC}\)
\(=\dfrac{AB^2+AC^2}{AB\cdot AC}\)
\(=\dfrac{BC^2}{AB\cdot AC}\)
\(=\dfrac{BC^2}{BC\cdot AH}=\dfrac{BC}{AH}\)
a) Do AM là trung tuyến nên BM = MC
Ta có : \(HC-HB-2HM\)
\(=HM+MC-HB-HM-HM\)
\(=MC-HB-HM\)
\(=MC-\left(HB+HM\right)\)
\(=MC-MB=0\)
\(\Rightarrow HC-HB=2MC\left(đpcm\right)\)
b) Xét \(\Delta AHM\)có \(\tan a=\frac{HM}{AH}\)
Xét \(\Delta AHC\)có \(\cot C=\frac{HC}{AH}\)
Xét \(\Delta AHB\)có \(\cot B=\frac{HB}{AH}\)
Ta có : \(\frac{\cot C-\cot B}{2}=\left(\frac{HC}{AH}-\frac{HB}{AH}\right)\div2=\frac{HC-HB}{AH}\div2\)
Mà \(HC-HB=2HM\)( câu a )
\(\Rightarrow\frac{\cot C-\cot B}{2}=\frac{2HM}{AH}\div2=\frac{HM}{AH}=\tan a\left(đpcm\right)\)
Vậy ...
Gọi giao điểm của hai trung tuyến BN và CM là : G ( sửa đề tí nhé ^-^)
Tia AG cắt BC tại D ( D ∈ BC )
Ta có : BD = DC \(\Rightarrow BC=2BD=2GD\) ( Do tam giác GDC vuông tại G )
Ta cũng có : AD = 3DG
Xét tam giác AHB vuông tại H có :
\(cotB=\dfrac{BH}{AH}\)
TT , \(cotC=\dfrac{HC}{AH}\)
\(\Rightarrow cotB+cotC=\dfrac{BC}{AH}=\dfrac{2GD}{AH}\ge\dfrac{2DG}{AD}=\dfrac{2DG}{3DG}=\dfrac{2}{3}\)