chứng minh rằng:
a)\(\frac{c\text{os}a.cot\text{a}-sin\text{a}.t\text{ana}}{\frac{1}{sin\text{a}}-\frac{1}{c\text{os}a}}=1+sin\text{a}.c\text{os}a\)
b)\(\frac{c\text{os}a+sin\text{a}-1}{c\text{os}a-sin\text{a}+1}=\frac{sin\text{a}}{1+c\text{os}a}\)
c)\(\frac{sin\text{a}}{1+c\text{os}a}+\frac{1+c\text{os}a}{sin\text{a}}=\frac{2}{sin\text{a}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
\(\frac{\sin a}{1+\cos a}+\cot a=\frac{\sin a}{1+\cos a}+\frac{\cos a}{\sin a}=\frac{\sin ^2a+\cos^2a+\cos a}{\sin a(1+\cos a)}\)
\(=\frac{1+\cos a}{\sin a(1+\cos a)}=\frac{1}{\sin a}\) (đpcm)
b)
\(\frac{1}{\cos a}-\frac{\cos a}{1+\sin a}=\frac{1+\sin a-\cos ^2a}{\cos a(1+\sin a)}=\frac{(1-\cos ^2a)+\sin a}{\cos a(\sin a+1)}\)
\(=\frac{\sin^2a+\sin a}{\cos a(\sin a+1)}=\frac{\sin a(\sin a+1)}{\cos a(\sin a+1)}=\frac{\sin a}{\cos a}=\tan a\) (đpcm)
c)
\(\frac{\tan a-\sin a}{\sin ^3a}=\frac{\frac{\sin a}{\cos a}-\sin a}{\sin ^3a}=\frac{\frac{1}{\cos a}-1}{\sin ^2a}=\frac{1-\cos a}{\cos a\sin ^2a}=\frac{1-\cos a}{\cos a(1-\cos ^2a)}=\frac{1}{\cos a(1+\cos a)}\)
d)
\(\frac{\sin a+\cos a-1}{\sin a-\cos a+1}=\frac{(\sin a+\cos a-1)(\sin a+\cos a+1)}{(\sin a-\cos a+1)(\sin a+\cos a+1)}=\frac{(\sin a+\cos a)^2-1}{(\sin a+1)^2-\cos ^2a}\)
\(=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-\cos ^2a}=\frac{1+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-(1-\sin ^2a)}\)
\(=\frac{2\sin a\cos a}{2\sin ^2a+2\sin a}=\frac{2\sin a\cos a}{2\sin a(\sin a+1)}=\frac{\cos a}{1+\sin a}\) (đpcm)
Mấu chốt trong các bài này là việc sử dụng công thức $\sin ^2a+\cos ^2a=1$
a) \(sin^6x+cos^6x+3sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cox^2x+cos^4x\right)+3sin^2x.cos^2x\)
\(=sin^4x-sin^2x.cox^2x+cos^4x+3sin^2x.cos^2x\)
\(=sin^4x+2sin^2x.cox^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\text{}\text{}\)
b) \(sin^4x-cos^4x-\left(sinx+cosx\right)\left(sinx-cosx\right)\)
\(=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)\)
\(=1\left(sin^2x-cos^2x\right)-\left(sin^2x-cos^2x\right)=0\)
c) \(cos^2x+tan^2x.cos^2x\)
\(=cos^2x+\dfrac{sin^2x}{cos^2x}.cos^2x=sin^2x+cos^2x=1\)
\(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\)
\(=1-\frac{1}{2}\left(2sinx.cosx\right)^2=1-\frac{1}{2}sin^22x\)
\(=1-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2}cos4x\right)=\frac{3}{4}+\frac{1}{4}cos4x\)
=(sin a+cos a)(sin^2.a-sina.cosa+cos^2a)+(sina+cosa)sina.cosa-cos a
=(sin a+cos a)(1-sina.cosa+sina.cosa)-cosa
=sina+cosa-cosa
=sina
\(y=\dfrac{\left(sin^2x+cos^2x\right)^2-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)-1}{\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-1}\)
\(=\dfrac{1-3sin^2x.cos^2x-1}{1-2sin^2x.cos^2x-1}=\dfrac{3}{2}\) ko phụ thuộc x
Nên \(y'=0\) không phụ thuộc x