Cho A là một số tự nhiên gồm 100 chữ số, trong đó có 99 chữ số 5 và một chữ số khác 5. Chứng minh rằng A không phải là số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A - B = 1111....1111 - 2 x 1111...111
(100 csố 1) (50 csố 1)
= 1111.....1111 x (1000...0001 - 2)
(50 chữ số 1) (có 51 csố trong đó có 49 csố 0)
= 1111.....11111 x 9999....9999
(50 csố 1) (50 csố 9)
= 1111...1111 x 9 x 1111....1111
(50csố1) (50csố1)
= (1111....1111)^2 x 3^2
= (1111.....1111 x 3)^2
Vậy hiệu A - B là một số chính phương
Ta có A=11...11(100 số 1)
⇔A=1...10...0 + 1...1(50 số 1 vào 50 số 0)
⇔A=1....1.10^50+1....1(50 số 1)
Đặt 50 lần số là a, ta có A=a.10^a+a
và B=2a
Vậy A-B=a.10^a-2a+a=a.10^a-a=a.(9a+1)-a=9a²+...
Vậy A-B là 1 số chính phương
Lik-e mình ngke pạn