K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2016

ta có:

A+B+1=11...1(2n số 1)+44...4(n số 4)+1

=\(\frac{10^{2n}-1}{9}+4.\frac{10^n-1}{9}+1=\frac{10^{2n}+4.10^n+4}{9}\)

\(=\frac{\left(10^n+2\right)^2}{9}=\frac{\left(10...02\right)^2}{9}=\left(33...34\right)^2\) (n-1 số 3)

=>là 1 SCP

 

6 tháng 2 2016

bn chờ chút để mk nhớ lại đã,mk nhớ mk làm dạng này r

12 tháng 11 2015

Ta có A=11...11(100 số 1) 
⇔A=1...10...0 + 1...1(50 số 1 vào 50 số 0) 
⇔A=1....1.10^50+1....1(50 số 1) 
Đặt 50 lần số là a, ta có A=a.10^a+a 
và B=2a 
Vậy A-B=a.10^a-2a+a=a.10^a-a=a.(9a+1)-a=9a²+...‡ 
Vậy A-B là 1 số chính phương 

Lik-e mình ngke pạn

3 tháng 9 2017

Bạn phân tích nhu mình vừa nãy thì sẽ có \(a=\frac{10^{2n}-1}{9}\) \(b=\frac{10^{n+1}-1}{9},c=\frac{6\left(10^n-1\right)}{9}\)

cộng tất cả vào ta sẽ có a+b+c+8 ( 8 =72/9) và bằng

\(\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)

phân tích 10^2n = (10^n)^2

10^(n+1) = 10^n.10 và 6(10^n-1) thành 6.10^n-6 và cộng 72-1-1=70, ta được

\(\frac{\left(10^n\right)^2+10^n.10+6.10^n-6+70}{9}\)

=\(\frac{\left(10^n\right)^2+10^n.16+64}{9}\)

=\(\frac{\left(10^n+8\right)^2}{3^2}\)

=\(\left(\frac{10^n+8}{3}\right)^2\)

vì 10^n +8 có dạng 10000..08 nên chia hết cho 3 => a+b+c+8 là số chính phương

3 tháng 9 2017

bạn cho mik hỏi câu b thì b là số gồm n+1 c/s nào

21 tháng 6 2017

kb nha Nguyễn Thiên Kim