K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 10 2021

a. Hàm xác định trên R

\(f\left(-x\right)=2\left(-x\right)^3-4\left(-x\right)=-2x^3+4x=-\left(2x^3-4x\right)=-f\left(x\right)\)

Hàm lẻ

b.

Hàm xác định trên R

\(f\left(-x\right)=\left|-x\right|+2\left(-x\right)=\left|x\right|-2x\) (khác \(f\left(x\right)\) và \(-f\left(x\right)\))

Hàm không chẵn không lẻ

15 tháng 1 2017

Đáp án D

Ta có tập xác định D = R.

Hàm số y = f(x) = 0 có:

f(-x) = 0 và –f(x) = 0

=> f(x) = f(-x) = -f(x)  vừa thỏa mãn tính chất của hàm số chẵn, vừa thỏa mãn tính chất của hàm số lẻ, nên đây là hàm số vừa chẵn vừa lẻ.

12 tháng 12 2020

a, \(y=f\left(x\right)=2x^2+1\)

\(f\left(-x\right)=2x^2+1=f\left(x\right)\Rightarrow\) Là hàm chẵn

b, \(y=f\left(x\right)=5x^3-2x\)

\(f\left(-x\right)=-5x^3+2x=-f\left(x\right)\Rightarrow\) Là hàm lẻ

c, \(y=f\left(x\right)=\sqrt{x-1}\)

ĐK: \(x\ge1\)

\(-f\left(x\right)=-\sqrt{x-1}\ne f\left(x\right)\Rightarrow\) Không phải là hàm số chẵn, lẻ

d, \(y=f\left(x\right)=5x^2-\dfrac{1}{x}\)

ĐK: \(x\ne0\)

\(f\left(-x\right)=5x^2+\dfrac{1}{x}\ne f\left(x\right)\)

\(-f\left(x\right)=-5x^2+\dfrac{1}{x}\ne f\left(-x\right)\)

\(\Rightarrow\) Không phải là hàm số chẵn, lẻ

18 tháng 10 2021

\(f\left(-x\right)=\left(-x\right)^{2020}-2\cdot\left(-x\right)^2-3\)

\(=x^{2020}-2x^2-3\)

=f(x)

=> f(x) là hàm số chẵn

16 tháng 11 2021

a: Hàm số đồng biến

b: Hàm số nghịch biến

NV
30 tháng 4 2021

a. \(y'=\dfrac{-1}{\left(x-1\right)}\)

b. \(y'=\dfrac{5}{\left(1-3x\right)^2}\)

c. \(y=\dfrac{\left(x+1\right)^2+1}{x+1}=x+1+\dfrac{1}{x+1}\Rightarrow y'=1-\dfrac{1}{\left(x+1\right)^2}=\dfrac{x^2+2x}{\left(x+1\right)^2}\)

d. \(y'=\dfrac{4x\left(x^2-2x-3\right)-2x^2\left(2x-2\right)}{\left(x^2-2x-3\right)^2}=\dfrac{-4x^2-12x}{\left(x^2-2x-3\right)^2}\)

e. \(y'=1+\dfrac{2}{\left(x-1\right)^2}=\dfrac{x^2-2x+3}{\left(x-1\right)^2}\)

g. \(y'=\dfrac{\left(4x-4\right)\left(2x+1\right)-2\left(2x^2-4x+5\right)}{\left(2x+1\right)^2}=\dfrac{4x^2+4x-14}{\left(2x+1\right)^2}\)

NV
30 tháng 4 2021

2.

a. \(y'=4\left(x^2+x+1\right)^3.\left(x^2+x+1\right)'=4\left(x^2+x+1\right)^3\left(2x+1\right)\)

b. \(y'=5\left(1-2x^2\right)^4.\left(1-2x^2\right)'=-20x\left(1-2x^2\right)^4\)

c. \(y'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{2x+1}{x-1}\right)'=3\left(\dfrac{2x+1}{x-1}\right)^2.\left(\dfrac{-3}{\left(x-1\right)^2}\right)=\dfrac{-9\left(2x+1\right)^2}{\left(x-1\right)^4}\)

d. \(y'=\dfrac{2\left(x+1\right)\left(x-1\right)^3-3\left(x-1\right)^2\left(x+1\right)^2}{\left(x-1\right)^6}=\dfrac{-x^2-6x-5}{\left(x-1\right)^4}\)

e. \(y'=-\dfrac{\left[\left(x^2-2x+5\right)^2\right]'}{\left(x^2-2x+5\right)^4}=-\dfrac{2\left(x^2-2x+5\right)\left(2x-2\right)}{\left(x^2-2x+5\right)^4}=-\dfrac{4\left(x-1\right)}{\left(x^2-2x+5\right)^3}\)

f. \(y'=4\left(3-2x^2\right)^3.\left(3-2x^2\right)'=-16x\left(3-2x^2\right)^3\)