K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

1 2 A B M C

Xét \(\Delta ABC\), đường trung tuyến AM có \(AM=\frac{1}{2}BC\). Ta sẽ chứng minh : \(\widehat{BAC}=90^0\)

Dễ thấy : MA = MB = MC

Các \(\Delta MAB,\Delta MAC\)cân tại M nên: \(\widehat{B}=\widehat{A_1},\widehat{C}=\widehat{A_2}\). Do đó :

\(\widehat{B}+\widehat{C}=\widehat{A_1}+\widehat{A_2}=\widehat{BAC}\)

9 tháng 1 2018

C A B M 1 2

GT : \(\Delta ABC\); MB = MC ; AM = \(\frac{1}{2}BC\)

KL : \(\Delta ABC\)vuông

giải

Ta có : MB = MA = MC ( gt ) .

Ta thấy \(\Delta MAB,\Delta MAC\)cân tại M

suy ra : \(\widehat{A_1}=\widehat{B}\)\(\widehat{A_2}=\widehat{C}\)

Vậy \(\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}\)hay \(\widehat{A}=\widehat{B}+\widehat{C}=\frac{180^o}{2}=90^o\)

Vậy \(\Delta ABC\)vuông

25 tháng 11 2016

Giả sử tam giác ABC có trung tuyến AM thoả AM=MB=MC. Khi đó gọi K là điểm trên AM sao cho AM = MK. Dễ dàng nhận thấy ABKC là hình chữ nhật => góc BAC=90 -> tam giác vuông

12 tháng 3 2023


Do \(MA=MB\left(gt\right)\)
\(\Rightarrow\Delta ABM\) cân tại M
\(\Rightarrow\widehat{B}=\widehat{A_1}\)   \(\left(1\right)\)
Do \(MA=MC\left(gt\right)\)
\(\Rightarrow\Delta AMC\) cân tại M
\(\Rightarrow\widehat{A_2}=\widehat{C}\)   \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}=\widehat{BAC}\)
Mà \(\widehat{B}+\widehat{C}+\widehat{BAC}=180^o\)(Tổng ba góc trong một tam giác)
\(\Rightarrow\widehat{B}+\widehat{C}=\widehat{BAC}=\dfrac{180^o}{2}=90^o\)
Do đó \(\Delta ABC\) vuông tại A

#Sahara
12 tháng 3 2023

mk cảm ơn ạ!

16 tháng 12 2017

  1/ Phần này đơn giản thôi bạn! Khi chứng minh tâm của đường tròn ngoại tiếp tam giác vuồn là trung điểm cạnh huyền thì ta chứng minh ngược lại là trung điểm của cạnh huyền trong 1 tam giác vuông là tâm của đường tròn ngoại tiếp. 
Giả sử ta có tam giác ABC vuông tại A và O là trung điểm của cạnh huyền BC 
=> AO là đường trung tuyến ứng với cạnh huyền 
=> OA = OB =OC = 1/2 BC 
=> O là tâm của đường tròn ngoại tiếp tam giác ABC 
Vậy .... 
2/ Giả sử ta có tam giác ABC có BC là đường kính của đường tròn ngoại tiếp tam giác. 
Gọi O là tâm của đường tròn ngoại tiếp tam giác ABC 
=>OA = OB =OC (*) 
mà BC là đường kính của đường tròn ngoại tiếp 
=> O là trung điểm BC 
=> OB = OC = 1/2 BC(**) 
từ (*) và (**) => OA = OB = OC = 1/2 BC 
=> tam giác ABC vuông tại A 

20 tháng 2 2018

@Nhoc_sieu_pham đây là toán lớp 7 mà, sao lại giải cách lớp 9 như vậy được?

Tham khảo link   :    https://hoc24.vn/cau-hoi/chung-minh-rang-trong-mot-tam-giac-neu-trung-tuyen-ung-voi-mot-canh-bang-mot-nua-canh-ay-thi-tam-giac-do-la-tam-giac-vuong.334426537652

10 tháng 2 2021

Trên tia đối của tia MA lấy điểm n sao cho MA=NA.

Xét ΔABM và ΔNCM có:

AM = AN ( theo cách lấy điểm N)

AMB = NMC ( đối đỉnh)

MB = MC (GT)

⇒ΔABM=ΔNCM(c.g.c)⇒AB=NC

Ta có : MA = 1/2 AN; mà MA = 1/2 BC

Suy ra: AN = BC

Xét ΔABC và ΔCNA CÓ:

AB = NC ( cmt)

AC chung

BC = AN (cmt)

⇒ΔABC=ΔNAC(c.c.c)⇒BAC=NCA

mà ABM=MCN ( vì t/g ABM = t/g NCM)

Suy ra ; AB//CN

10 tháng 2 2021

Cho mình bổ sung từ cái phần " =>" ở cuối cùng ý là :

Suy ra ; AB//CN

⇒BAC+NCA=180O (hai góc trong cùng phía)

=> 2.BAC = 180O

=> BAC= 90O

Do dó t/g BAC vuông tại A

Vậy trong một tam giác,nếu trung tuyến ứng với một cạnh bằng một nửa cạnh ấy thì tam giác đó là tam giác vuông

Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

Suy ra; BC=AD

=>AM=BC/2