GIẢI HPT
\(\hept{\begin{cases}X^3+2XY^2=5\\2X^2+XY+Y^2=4X+Y\end{cases}}\)
A CHỊ ƠI GIUPSE GIẢI BÀI NÀY
MAI E ĐI HOK ROI
E TỊKS CHO
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}x^2+2xy-2x-2y+1=0\left(1\right)\\3x^2+xy+4x-y-7=0\left(2\right)\end{cases}}\)
\(\Rightarrow2x^2-xy+6x+y-8=0\)
\(\Leftrightarrow2x^2+\left(6-y\right)+y-8=0\)
Ta có: \(\Delta=\left(6-y\right)^2-4\cdot2\cdot\left(y-8\right)=36-12y+y^2-8y+64=\left(y-10\right)^2\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{y-6+y-10}{4}=\frac{y-8}{2}\Rightarrow y=2x+8\\x=\frac{y-6-y+10}{4}=1\end{cases}}\)
Với từng trường hợp thay vào pt (1) hoặc (2) sẽ ra
Chà chà :) toán lớp 1 khó phết chứ đùa :3 phải đi học lại lớp 1 thôi
\(a,\hept{\begin{cases}x^2+y^2+x+y=4\\x\left(x+y+1\right)+y\left(y+1\right)=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2+x+y=4\\x^2+xy+x+y^2+y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2+x+y=4\\x^2+y^2+x+y+xy=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2+x+y=4\\xy=-2\end{cases}}\)(Trừ 2 pt cho nhau)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2+x+y-2xy=4\\xy=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2+x+y+4=4\\xy=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)\left(x+y+1\right)=0\\xy=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\xy=-2\end{cases}\left(h\right)\hept{\begin{cases}x+y+1=0\\xy=-2\end{cases}}}\)
MN ƠI GIÚP E