Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\hept{\begin{cases}x^2+y^2+x+y=4\\x\left(x+y+1\right)+y\left(y+1\right)=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2+x+y=4\\x^2+xy+x+y^2+y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2+x+y=4\\x^2+y^2+x+y+xy=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2+y^2+x+y=4\\xy=-2\end{cases}}\)(Trừ 2 pt cho nhau)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2+x+y-2xy=4\\xy=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2+x+y+4=4\\xy=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)\left(x+y+1\right)=0\\xy=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\xy=-2\end{cases}\left(h\right)\hept{\begin{cases}x+y+1=0\\xy=-2\end{cases}}}\)
a) \(\hept{\begin{cases}x\left(x+2\right)\left(3x+y\right)=64\left(1\right)\\x^2+5x+y=16\left(2\right)\end{cases}}\)
từ pt (2) \(\Rightarrow y=16-x^2-5x\)thay vào pt (1), ta được:
\(\left(x^2+2x\right)\left(3x+16-x^2-5x\right)=64\)
nhân ra giải phương trình rồi tìm x, tự lm nhé.
b) Hệ pt \(\Leftrightarrow\hept{\begin{cases}2\left(x-y\right)-xy=8+12\sqrt{2}\\\left(x-y\right)^2+2xy=24\end{cases}}\)
Đặt a=x-y; b=xy, thay vào hệ, giải bằng phương pháp cộng tìm a;b, thay số tìm x;y. Tự lm nhé
hệ pt <=> (x-y).(x^2+y^2) = 5
(x+y)^2.(x-y) = 9
+, Nếu x=y => hệ pt vô nghiệm [ vì 9 khác (x+y)^2.0 ]
=> x khác y
=> x-y khác 0
Chia vế theo vế của 2 pt trong hệ pt ta được :
x^2+y^2/(x+y)^2 = 5/9
<=> 9.(x^2+y^2) = 5.(x+y)^2
<=> 9.(x^2+y^2)-5.(x+y)^2 = 0
<=> 4x^2-10xy+4y^2 = 0
<=> (4x^2-8xy)-(2xy-4y^2) = 0
<=> (x-2y).(4x-2y) = 0
<=> (x-2y).(2x-y) = 0
<=> x=2y hoặc x=1/2.y
Đến đó bạn thay vào 1 trong 2 pt để giải nha
Tk mk nha