a)\(\frac{X-1}{x+5}=\frac{6}{7}\) b)\(\frac{x^2}{6}=\frac{24}{25}\)
c)\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ( 152 +và 2/4 - 148 và 3/8 ) : 0,2 = x : 0,3
=> 33/8 : 1/5 = x : 3/10
=> x : 3/10 = 165/8
=> x = 99/10
b, ( 85 và 7/30 - 83 và 5/18 ) : 2 và 2/3 = 0,01x : 4
=> 88/45 : 8/3 = 0,01x : 4
=> 0,01x : 4 = 11/15
=> 0,01x = 44/15
=> x = 880/3
c, x - 1/ x + 5 = 6/7
=> 7( x - 1 ) = 6( x + 5 )
=> 7x - 7 = 6x + 30
=> 7x - 6x = 7 + 30
=> x = 37
d, x2/6 = 24/25
=> x2. 25 = 6 . 24
=> x2.25 = 144
=> x2 = 144/25
=> x = ( 12/5)2 hoặc x = ( -12/5)
g, x - 3/ x + 5 = 5/7
=> 7( x - 3 ) = 5 ( x + 5 )
=> 7x - 21 = 5x + 25
=> 7x - 5x = 21 + 25
=> 2x = 46
=> x = 23
a) \(\frac{x-1}{x+5}=\frac{6}{7}\)
7( x - 1 ) = 6( x + 5 )
7x - 7 = 6x - 30
7x - 6x = -30 + 7
x = -23
b) \(\frac{x^2}{6}=\frac{24}{25}\)
\(x^2.25=6.24\)
\(x^2.25=144\)
\(x^2=\frac{144}{25}\)
\(x=\sqrt{\frac{144}{25}}\)
\(x=\frac{12}{5}\)
c) \(\frac{x-2}{x-4}=\frac{x+4}{x+7}\)
\(\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-4\right)\)
\(x^2+7x-2x-14=x^2-4x+4x-16\)
\(x^2+5x-14=x^2^{ }-16\)
\(x^2-x^2+5x=-16+14\)
\(5x=-2\)\(x=\frac{-2}{5}\)
a) \(x:8=7:4\)
=> \(\frac{x}{8}=\frac{7}{4}\)
=> \(x.4=7.8\)
=> \(x.4=56\)
=> \(x=56:4\)
=> \(x=14\)
Vậy \(x=14.\)
b) \(\left(x+1\right):0,75=1,4:0,25\)
=> \(\left(x+1\right):0,75=5,6\)
=> \(\left(x+1\right)=5,6.0,75\)
=> \(x+1=4,2\)
=> \(x=4,2-1\)
=> \(x=3,2\)
Vậy \(x=3,2.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
Câu 6 :
a, Ta có : \(x+\frac{2x+\frac{x-1}{5}}{3}=1-\frac{3x-\frac{1-2x}{3}}{5}\)
=> \(\frac{15x}{15}+\frac{5\left(2x+\frac{x-1}{5}\right)}{15}=\frac{15}{15}-\frac{3\left(3x-\frac{1-2x}{3}\right)}{15}\)
=> \(15x+5\left(2x+\frac{x-1}{5}\right)=15-3\left(3x-\frac{1-2x}{3}\right)\)
=> \(15x+10x+\frac{5\left(x-1\right)}{5}=15-9x+\frac{3\left(1-2x\right)}{3}\)
=> \(15x+10x+x-1=15-9x+1-2x\)
=> \(15x+10x+x-1-15+9x-1+2x=0\)
=> \(37x-17=0\)
=> \(x=\frac{17}{37}\)
Vậy phương trình trên có nghiệm là \(S=\left\{\frac{17}{37}\right\}\)
Bài 7 :
a, Ta có : \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
=> \(\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}-\frac{x-23}{27}=0\)
=> \(\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}-\frac{1}{27}\right)=0\)
=> \(x-23=0\)
=> \(x=23\)
Vậy phương trình trên có nghiệm là \(S=\left\{23\right\}\)
c, Ta có : \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
=> \(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)
=> \(\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2001}=0\)
=> \(\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
=> \(x+2005=0\)
=> \(x=-2005\)
Vậy phương trình trên có nghiệm là \(S=\left\{-2005\right\}\)
e, Ta có : \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
=> \(\frac{x-45}{55}-1+\frac{x-47}{53}-1=\frac{x-55}{45}-1+\frac{x-53}{47}-1\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
=> \(\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
=> \(\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
=> \(x-100=0\)
Vậy phương trình trên có nghiệm là \(S=\left\{100\right\}\)
a, \(\left|x+\frac{1}{3}\right|=0\Leftrightarrow x=-\frac{1}{3}\)
b, \(\left|\frac{5}{18}-x\right|-\frac{7}{24}=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{18}-x=\frac{7}{24}\\\frac{5}{18}-x=-\frac{7}{24}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{72}\\x=\frac{41}{72}\end{cases}}\)
c, \(\frac{2}{5}-\left|\frac{1}{2}-x\right|=6\Leftrightarrow\left|\frac{1}{2}-x\right|=-\frac{28}{5}\)vô lí
Vì \(\left|\frac{1}{2}-x\right|\ge0\forall x\)*luôn dương* Mà \(-\frac{28}{5}< 0\)
=> Ko có x thỏa mãn
\(|x+\frac{1}{3}|=0\)
\(< =>x+\frac{1}{3}=0< =>x=-\frac{1}{3}\)
\(|x+\frac{3}{4}|=\frac{1}{2}\)
\(< =>\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{cases}}\)
a.
\(\frac{x-1}{x-5}=\frac{6}{7}\)
\(\left(x-1\right)\times7=6\times\left(x-5\right)\)
\(7x-7=6x-30\)
\(7x-6x=-30+7\)
\(x=-23\)
b.
\(\frac{x^2}{6}=\frac{24}{25}\)
\(x^2=\frac{24}{25}\times6\)
\(x^2=\frac{144}{25}\)
\(x^2=\left(\pm\frac{12}{5}\right)^2\)
\(x=\pm\frac{12}{5}\)
Vậy \(x=\frac{12}{5}\) hoặc \(x=-\frac{12}{5}\)
\(a,\frac{x-1}{x+5}=\frac{6}{7}\)
\(\Rightarrow7x-7=6x+30\)
\(\Rightarrow x=37\)
Vậy x=37
b) \(\frac{x^2}{6}=\frac{24}{25}\)
\(\Leftrightarrow x^2.25=6.24\)
\(\Leftrightarrow x^2.25=144\)
\(\Leftrightarrow x^2=\frac{144}{25}\)
\(\Leftrightarrow x=\pm\sqrt{\frac{144}{25}}=\pm\frac{12}{5}\)