x:(\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\) )=2019
giúp mình với sáng mai mình phải nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)
\(=\frac{x-3}{x-2}+\frac{x-2}{x-4}=\frac{16}{5}\)
\(\Rightarrow5\left(x-3\right)\left(x-4\right)+5\left(x-2\right)\left(x-2\right)=16\left(x-2\right)\left(x-4\right)\)
\(\Leftrightarrow5x^2-35x+60+5x^2-20x+20=16x^2-96x+128\)
\(\Leftrightarrow10x^2-55x+80=16x^2-96x+128\)
\(\Leftrightarrow-6x^2+41x-48=0\)
......
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Leftrightarrow\frac{x-3}{x-2}+\frac{x-2}{x-4}=\frac{16}{5}\)
\(\Leftrightarrow\frac{5\left(x-3\right)\left(x-4\right)+5\left(x-2\right)^2}{5\left(x-2\right)\left(x-4\right)}=\frac{16.\left(x-2\right)\left(x-4\right)}{5\left(x-2\right)\left(x-4\right)}\)
\(\Rightarrow5x^2-20x-15x+60+5x^2-20x+20=16x^2-64x-32x+128\)
\(\Leftrightarrow10x^2-55x+80=16x^2-96x+128\)
\(\Leftrightarrow6x^2-41x+48=0\)
\(\Leftrightarrow x=\frac{16}{3};x=\frac{3}{2}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{x\left(x+1\right)}=\frac{215}{216}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{215}{216}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{215}{216}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{215}{216}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{216}\)
\(\Leftrightarrow x=216-1=215\)
\(\frac{B}{\sqrt{2}}=\frac{\frac{2+\sqrt{3}}{2}}{\sqrt{2}+\sqrt{\frac{4+2\sqrt{3}}{2}}}+\frac{\frac{2-\sqrt{3}}{2}}{\sqrt{2}-\sqrt{\frac{4-2\sqrt{3}}{2}}}\)
\(=\frac{\frac{2+\sqrt{3}}{2}}{\frac{2}{\sqrt{2}}+\sqrt{\frac{\left(\sqrt{3}+1\right)^2}{2}}}+\frac{\frac{2-\sqrt{3}}{2}}{\frac{2}{\sqrt{2}}-\sqrt{\frac{\left(\sqrt{3}-1\right)^2}{2}}}\)
\(=\frac{\frac{2+\sqrt{3}}{2}}{\frac{2}{\sqrt{2}}+\frac{\sqrt{3}+1}{\sqrt{2}}}+\frac{\frac{2-\sqrt{3}}{2}}{\frac{2}{\sqrt{2}}-\frac{\sqrt{3}-1}{\sqrt{2}}}=\frac{\frac{2+\sqrt{3}}{2}}{\frac{\sqrt{3}+3}{\sqrt{2}}}+\frac{\frac{2-\sqrt{3}}{2}}{\frac{3-\sqrt{3}}{\sqrt{2}}}\)
\(=\frac{\left(2+\sqrt{3}\right).\sqrt{2}}{2\cdot\left(3+\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right).\sqrt{2}}{2.\left(3-\sqrt{3}\right)}\)
=> \(B=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}=\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}\)
\(B=\frac{3+\sqrt{3}}{6}+\frac{3-\sqrt{3}}{6}=1\)
----
Vài chỗ mình làm vắn tắt không hiểu cứ hỏi nhé, còn kết quả mình ấn máy tính ra chính xác rùi :)
Em nghĩ là như vầy ạ:
\(B=\frac{4-x+x+1}{\left(4-x\right)\left(x+1\right)}=\frac{5}{-x^2+3x+4}\) (-1 < x < 4)
Ta có: \(-x^2+3x+4=-\left(x-\frac{3}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Do đó: \(B=\frac{5}{-x^2+3x+4}\ge\frac{5}{\frac{25}{4}}=\frac{20}{25}=\frac{4}{5}\)
Vậy min B = 4/5 khi x = 3/2 (TMĐK)
Trả lời
x:(1/2+1/3+1/6)=2019
x:6/6 =2019
x:1 =2019
=>x =2019.1
=>x =2019
Học tốt !
x : (\(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{6}\)) = 2019
x : 1 = 2019
x = 2019