Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}:\frac{4}{3}:\frac{-5}{4}:\frac{6}{5}:...:\frac{-101}{100}\)
<=> \(A=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{-4}{5}\cdot\frac{5}{6}\cdot...\cdot\frac{-100}{101}\)
Trong biểu thức A có số số âm là (100-4):2 + 1 =49 số
Vậy A là số âm => \(A=-\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot...\cdot\frac{100}{101}\right)\)
=> \(A=-\left(\frac{1}{2}\cdot\frac{3}{101}\right)=\frac{-3}{202}\)
Ta có công thức :
\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Áp dụng vào bài toán ta được :
\(C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}..........\frac{2015^2}{2014.2016}\)
\(=\frac{\left(2.3.4....2015\right)\left(2.3.4....2015\right)}{\left(1.2.3...2014\right)\left(3.4.5.....2016\right)}\)
\(=\frac{2015.2}{2016}=\frac{2015}{1008}\)
=1(1/1*3*(1/2*4)*...*(1+1/2014*2016)
=1/2(2+2/1*3)+(2+2/2*4)*...(2+2/2014*2016)
=1/2(2+1/1-1/3)...(2+1/2014-1/2016)
=1/2*(1/1-1/2016)
=3023/4032
D = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)....\left(\frac{1}{100^2}-1.\right)\)
=>\(-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)....\left(1-\frac{1}{100^2}.\right)\)
=>\(-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{100^2-1}{100^2}\)
=>\(-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{99.101}{100^2}\right)\)
=>\(-\left(\frac{1.2.3...99}{2.3.4....100}\right)\left(\frac{3.4.5....101}{2.3.4....100}\right)\)
=>\(-\left(\frac{1}{100}.\frac{101}{2}\right)\)
=>\(D=-\frac{101}{200}\)
\(E=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{200}\left(1+2+....+200\right)\)
\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{200}.\frac{200.201}{2}\)
\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{201}{2}\)
\(=\frac{2+3+4+...+201}{2}\)
\(=\frac{\frac{201.202}{2}-1}{2}=10150\)
Ta có : \(\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{\frac{6}{5}+\frac{6}{7}-\frac{2}{3}+\frac{6}{11}}=\frac{\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}}{2\left(\frac{3}{5}+\frac{3}{7}-\frac{1}{3}+\frac{3}{11}\right)}=\frac{1}{2}\)
Lại có : \(\frac{\left(\frac{1}{4}-\frac{1}{5}-\frac{1}{20}\right).2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=\frac{0.2021}{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}}=0\)
Khi đó \(B=\frac{1}{2}+0=\frac{1}{2}\)
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
_Tần vũ_
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Leftrightarrow3x=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{18}\)
_Tần Vũ_